Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
The
radius of a circle
is
14
e
x
t
c
m
14 ext{cm}
14
e
x
t
c
m
. Find its area in terms of
e
x
t
p
i
ext{pi}
e
x
t
p
i
. Answer A = oxed{} ext{cm}^{2} Submit Answer
View step-by-step help
Home
Math Problems
Grade 6
Evaluate variable expressions: word problems
Full solution
Q.
The radius of a circle is
14
e
x
t
c
m
14 ext{cm}
14
e
x
t
c
m
. Find its area in terms of
e
x
t
p
i
ext{pi}
e
x
t
p
i
. Answer A = oxed{} ext{cm}^{2} Submit Answer
Calculate Area Formula:
Step
1
1
1
: We know the formula for the
area of a circle
is
A
=
π
r
2
A = \pi r^2
A
=
π
r
2
.
Plug in Radius:
Step
2
2
2
: Plug in the radius
r
=
14
e
x
t
c
m
r = 14 ext{ cm}
r
=
14
e
x
t
c
m
into the formula.
A
=
π
(
14
)
2
A = \pi (14)^2
A
=
π
(
14
)
2
Calculate Radius Squared:
\newline
Step
3
3
3
: Calculate
1
4
2
14^2
1
4
2
.
\newline
14
×
14
=
196
14 \times 14 = 196
14
×
14
=
196
Multiply by Pi:
Step
4
4
4
: Multiply the result by
π
\pi
π
.
A
=
196
π
cm
2
A = 196\pi \ \text{cm}^2
A
=
196
π
cm
2
More problems from Evaluate variable expressions: word problems
Question
What is the midline equation of
\newline
y
=
−
9
cos
(
π
2
x
−
6
)
+
8
?
y
=
□
\begin{array}{l} y=-9 \cos \left(\frac{\pi}{2} x-6\right)+8 ? \\ y=\square \end{array}
y
=
−
9
cos
(
2
π
x
−
6
)
+
8
?
y
=
□
Get tutor help
Posted 10 months ago
Question
z
=
11.1
i
−
45
z=11.1 i-45
z
=
11.1
i
−
45
\newline
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}\operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
(
−
14
+
3
i
)
−
(
14
i
)
=
(-14+3 i)-(14 i)=
(
−
14
+
3
i
)
−
(
14
i
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Question
(
12
−
9
i
)
+
(
32
−
6
i
)
=
(12-9 i)+(32-6 i)=
(
12
−
9
i
)
+
(
32
−
6
i
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Question
What happens to the value of the expression
3
y
2
y
\frac{3 y}{2 y}
2
y
3
y
as
y
y
y
increases?
\newline
Choose
1
1
1
answer:
\newline
(A) It increases.
\newline
(B) It decreases.
\newline
(C) It stays the same.
Get tutor help
Posted 10 months ago
Question
Find the following trigonometric values.
\newline
Express your answers exactly.
\newline
cos
(
7
π
4
)
=
□
sin
(
7
π
4
)
=
□
\begin{array}{l} \cos \left(\frac{7 \pi}{4}\right)=\square \\ \sin \left(\frac{7 \pi}{4}\right)=\square \end{array}
cos
(
4
7
π
)
=
□
sin
(
4
7
π
)
=
□
Get tutor help
Posted 10 months ago
Question
Which equation has a constant of proportionality equal to
3
3
3
?
\newline
Choose
1
1
1
answer:
\newline
(A)
y
=
8
5
x
y=\frac{8}{5} x
y
=
5
8
x
\newline
(B)
y
=
1
3
x
y=\frac{1}{3} x
y
=
3
1
x
\newline
(C)
y
=
1
4
x
y=\frac{1}{4} x
y
=
4
1
x
\newline
(D)
y
=
18
6
x
y=\frac{18}{6} x
y
=
6
18
x
Get tutor help
Posted 9 months ago
Question
Reduce to simplest form.
\newline
−
5
8
+
(
−
8
5
)
=
-\frac{5}{8}+\left(-\frac{8}{5}\right)=
−
8
5
+
(
−
5
8
)
=
Get tutor help
Posted 9 months ago
Question
Reduce to simplest form.
\newline
−
1
4
−
(
−
3
5
)
=
-\frac{1}{4}-\left(-\frac{3}{5}\right)=
−
4
1
−
(
−
5
3
)
=
Get tutor help
Posted 9 months ago
Question
Reduce to simplest form.
\newline
−
1
3
−
(
−
3
5
)
=
-\frac{1}{3}-\left(-\frac{3}{5}\right)=
−
3
1
−
(
−
5
3
)
=
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant