Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The functions f and g are given by 
{:[f(x)=(1)/(2)log_(10)(x-3)],[g(x)=3ln(x+2)]:}
(A) Solve f(x)=1 for values of x in the domain of f.

The functions f f and g g are given by\newlinef(x)=12log10(x3)g(x)=3ln(x+2) \begin{array}{l} f(x)=\frac{1}{2} \log _{10}(x-3) \\ g(x)=3 \ln (x+2) \end{array} \newline(A) Solve f(x)=1 f(x)=1 for values of x x in the domain of f f .

Full solution

Q. The functions f f and g g are given by\newlinef(x)=12log10(x3)g(x)=3ln(x+2) \begin{array}{l} f(x)=\frac{1}{2} \log _{10}(x-3) \\ g(x)=3 \ln (x+2) \end{array} \newline(A) Solve f(x)=1 f(x)=1 for values of x x in the domain of f f .
  1. Set f(x)f(x) equal to 11: Set the function f(x)f(x) equal to 11 and solve for x.\newlinef(x)=12log10(x3)=1f(x) = \frac{1}{2}\log_{10}(x-3) = 1
  2. Multiply by 22: Multiply both sides of the equation by 22 to isolate the logarithm.\newline2×(12)log10(x3)=2×12 \times (\frac{1}{2})\log_{10}(x-3) = 2 \times 1\newlinelog10(x3)=2\log_{10}(x-3) = 2
  3. Convert to exponential form: Convert the logarithmic equation to its exponential form.\newline10log10(x3)=10210^{\log_{10}(x-3)} = 10^2\newlinex3=100x - 3 = 100
  4. Add 33 to solve for x: Add 33 to both sides of the equation to solve for x.\newlinex3+3=100+3x - 3 + 3 = 100 + 3\newlinex=103x = 103

More problems from Find derivatives of logarithmic functions