Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The function 
f is given by 
f(x)=5x^(6)-2x^(3)-3. Which of the following describes the end behavior of 
f ?
(A) 
quadlim_(x rarr-oo)f(x)=-oo and 
lim_(x rarr oo)f(x)=-oo
(B) 
quadlim_(x rarr-oo)f(x)=oo and 
lim_(x rarr oo)f(x)=oo
(C) 
lim_(x rarr-oo)f(x)=-oo and 
lim_(x rarr oo)f(x)=oo
(D) 
quadlim_(x rarr-oo)f(x)=oo and 
lim_(x rarr oo)f(x)=-oo

The function f f is given by f(x)=5x62x33 f(x)=5 x^{6}-2 x^{3}-3 . Which of the following describes the end behavior of f f ?\newline(A) limxf(x)= \lim _{x \rightarrow-\infty} f(x)=-\infty and limxf(x)= \lim _{x \rightarrow \infty} f(x)=-\infty \newline(B) limxf(x)= \lim _{x \rightarrow-\infty} f(x)=\infty and limxf(x)= \lim _{x \rightarrow \infty} f(x)=\infty \newline(C) limxf(x)= \lim _{x \rightarrow-\infty} f(x)=-\infty and limxf(x)= \lim _{x \rightarrow \infty} f(x)=\infty \newline(D) limxf(x)= \lim _{x \rightarrow-\infty} f(x)=\infty and limxf(x)= \lim _{x \rightarrow \infty} f(x)=-\infty

Full solution

Q. The function f f is given by f(x)=5x62x33 f(x)=5 x^{6}-2 x^{3}-3 . Which of the following describes the end behavior of f f ?\newline(A) limxf(x)= \lim _{x \rightarrow-\infty} f(x)=-\infty and limxf(x)= \lim _{x \rightarrow \infty} f(x)=-\infty \newline(B) limxf(x)= \lim _{x \rightarrow-\infty} f(x)=\infty and limxf(x)= \lim _{x \rightarrow \infty} f(x)=\infty \newline(C) limxf(x)= \lim _{x \rightarrow-\infty} f(x)=-\infty and limxf(x)= \lim _{x \rightarrow \infty} f(x)=\infty \newline(D) limxf(x)= \lim _{x \rightarrow-\infty} f(x)=\infty and limxf(x)= \lim _{x \rightarrow \infty} f(x)=-\infty
  1. Identify Leading Term: Identify the leading term of the polynomial function. The leading term of the polynomial f(x)=5x62x33f(x) = 5x^6 - 2x^3 - 3 is 5x65x^6 because it has the highest power of xx.
  2. Determine End Behavior: Determine the end behavior based on the leading term.\newlineSince the leading term is 5x65x^6, and the coefficient 55 is positive, as xx approaches infinity, the function f(x)f(x) will approach positive infinity. Similarly, as xx approaches negative infinity, the function f(x)f(x) will also approach positive infinity because the leading term has an even power.
  3. Match End Behavior: Match the end behavior with the given options.\newlineThe correct end behavior is that f(x)f(x) approaches positive infinity as xx approaches both positive and negative infinity. This matches option (B).

More problems from Find derivatives of sine and cosine functions