Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
((m^(2))/(m^((1)/(3))))^(-(1)/(2)) is equivalent to
(1) 
root(16)(m^(5))
(3) 
-mroot(5)(m)
(2) 
(1)/(root(6)(m^(5)))
(4) 
(1)/(mroot(3)(m))

The expression (m2m13)12 \left(\frac{m^{2}}{m^{\frac{1}{3}}}\right)^{-\frac{1}{2}} is equivalent to\newline(11) m516 \sqrt[16]{m^{5}} \newline(33) mm5 -m \sqrt[5]{m} \newline(22) 1m56 \frac{1}{\sqrt[6]{m^{5}}} \newline(44) 1mm3 \frac{1}{m \sqrt[3]{m}}

Full solution

Q. The expression (m2m13)12 \left(\frac{m^{2}}{m^{\frac{1}{3}}}\right)^{-\frac{1}{2}} is equivalent to\newline(11) m516 \sqrt[16]{m^{5}} \newline(33) mm5 -m \sqrt[5]{m} \newline(22) 1m56 \frac{1}{\sqrt[6]{m^{5}}} \newline(44) 1mm3 \frac{1}{m \sqrt[3]{m}}
  1. Simplify inside parentheses: We start by simplifying the expression inside the parentheses before dealing with the outer negative exponent.\newlineThe expression inside the parentheses is a quotient of powers with the same base, so we can subtract the exponents.\newlinem2m13=m213=m6313=m53\frac{m^{2}}{m^{\frac{1}{3}}} = m^{2 - \frac{1}{3}} = m^{\frac{6}{3} - \frac{1}{3}} = m^{\frac{5}{3}}
  2. Apply negative exponent: Now we apply the outer exponent of 12-\frac{1}{2} to the simplified base.\newline(m53)12=m(5312)=m56(m^{\frac{5}{3}})^{-\frac{1}{2}} = m^{(\frac{5}{3} \cdot -\frac{1}{2})} = m^{-\frac{5}{6}}
  3. Reciprocal of base: The negative exponent indicates that the expression is the reciprocal of the base with the positive exponent. m56=1m56m^{-\frac{5}{6}} = \frac{1}{m^{\frac{5}{6}}}
  4. Rewrite as radical expression: The expression 1m56\frac{1}{m^{\frac{5}{6}}} can be rewritten as a radical expression.\newline1m56=1m56\frac{1}{m^{\frac{5}{6}}} = \frac{1}{\sqrt[6]{m^{5}}}
  5. Compare with options: We compare the simplified expression with the given options.\newlineThe correct option that matches our simplified expression is option (2)(2) (1m56)\left(\frac{1}{\sqrt[6]{m^{5}}}\right).

More problems from Multiplication with rational exponents