Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A circle with area 
36 pi has a sector with a central angle of 
48^(@). What is the area of the sector?
Choose 1 answer:
(A) 
(5)/(24)pi
B 
(1)/(270)pi
(C) 
270 pi
(D) 
(24)/(5)pi

Acircle with area 36π 36 \pi has a sector with a central angle of 48 48^{\circ} . What is the area of the sector?\newlineChoose 11 answer:\newline(A) 524π \frac{5}{24} \pi \newline(B) 1270π \frac{1}{270} \pi \newline(C) 270π 270 \pi \newline(D) 245π \frac{24}{5} \pi \newline

Full solution

Q. Acircle with area 36π 36 \pi has a sector with a central angle of 48 48^{\circ} . What is the area of the sector?\newlineChoose 11 answer:\newline(A) 524π \frac{5}{24} \pi \newline(B) 1270π \frac{1}{270} \pi \newline(C) 270π 270 \pi \newline(D) 245π \frac{24}{5} \pi \newline
  1. Identify Formula: Identify the formula to calculate the area of a sector of a circle.\newlineThe area of a sector is given by the formula: (central angle360)×π×r2(\frac{\text{central angle}}{360}) \times \pi \times r^2, where rr is the radius of the circle.
  2. Find Radius: Find the radius of the circle using the area of the circle.\newlineThe area of the circle is given as 36π36\pi, and the formula for the area of a circle is πr2\pi * r^2. We can set up the equation 36π=πr236\pi = \pi * r^2 and solve for rr.\newline36π=πr236\pi = \pi * r^2\newliner2=36r^2 = 36\newliner=36r = \sqrt{36}\newliner=6r = 6
  3. Calculate Sector Area: Calculate the area of the sector using the radius and the central angle.\newlineNow that we know the radius r=6r = 6 and the central angle 4848 degrees, we can use the sector area formula:\newline(sector area)=48360×π×(6)2\text{(sector area)} = \frac{48}{360} \times \pi \times (6)^2\newline(sector area)=48360×π×36\text{(sector area)} = \frac{48}{360} \times \pi \times 36\newline(sector area)=430×π×36\text{(sector area)} = \frac{4}{30} \times \pi \times 36\newline(sector area)=215×π×36\text{(sector area)} = \frac{2}{15} \times \pi \times 36\newline(sector area)=2×3615×π\text{(sector area)} = \frac{2 \times 36}{15} \times \pi\newline(sector area)=7215×π\text{(sector area)} = \frac{72}{15} \times \pi\newline(sector area)=4.8×π\text{(sector area)} = 4.8 \times \pi
  4. Simplify Area: Simplify the sector area to match one of the given answer choices.\newline(sector area)=4.8×π(\text{sector area}) = 4.8 \times \pi\newlineThis does not match any of the answer choices exactly, but we can convert it to a fraction:\newline(sector area)=(245)×π(\text{sector area}) = \left(\frac{24}{5}\right) \times \pi\newlineThis matches answer choice (D)(D).

More problems from Area of quadrilaterals and triangles: word problems