Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 6 in by 9 in. Eric measures the sides to be 5.96 in by 8.75 in. In calculating the area, what is the relative error, to the nearest hundredth.
Answer:

The actual dimensions of a rectangle are 66 in by 99 in. Eric measures the sides to be 55.9696 in by 88.7575 in. In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 66 in by 99 in. Eric measures the sides to be 55.9696 in by 88.7575 in. In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Calculate Actual Area: First, we need to calculate the actual area of the rectangle using the actual dimensions.\newlineActual area = length×width\text{length} \times \text{width}\newlineActual area = 6in×9in6 \, \text{in} \times 9 \, \text{in}\newlineActual area = 54in254 \, \text{in}^2
  2. Calculate Measured Area: Next, we calculate the measured area of the rectangle using the measured dimensions.\newlineMeasured area =measured length×measured width= \text{measured length} \times \text{measured width}\newlineMeasured area =5.96in×8.75in= 5.96 \, \text{in} \times 8.75 \, \text{in}\newlineMeasured area =52.15in2= 52.15 \, \text{in}^2
  3. Find Absolute Error: Now, we find the absolute error in the area by subtracting the measured area from the actual area.\newlineAbsolute error =Actual areaMeasured area= \text{Actual area} - \text{Measured area}\newlineAbsolute error =54 in252.15 in2= 54 \text{ in}^2 - 52.15 \text{ in}^2\newlineAbsolute error =1.85 in2= 1.85 \text{ in}^2
  4. Find Relative Error: To find the relative error, we divide the absolute error by the actual area and then multiply by 100100 to get the percentage.\newlineRelative error = (Absolute error/Actual area)×100(\text{Absolute error} / \text{Actual area}) \times 100\newlineRelative error = (1.85in2/54in2)×100(1.85 \, \text{in}^2 / 54 \, \text{in}^2) \times 100\newlineRelative error = 0.034259259×1000.034259259 \times 100\newlineRelative error = 3.4259259%3.4259259\%
  5. Round Relative Error: Finally, we round the relative error to the nearest hundredth.\newlineRelative error 3.43%\approx 3.43\%

More problems from Circles: word problems