Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 6 in by 
4in. Carter measures the sides to be 5.75 in by 
3.59in. In calculating the area, what is the relative error, to the nearest hundredth.
Answer:

The actual dimensions of a rectangle are 66 in by 4in 4 \mathrm{in} . Carter measures the sides to be 55.7575 in by 3.59in 3.59 \mathrm{in} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 66 in by 4in 4 \mathrm{in} . Carter measures the sides to be 55.7575 in by 3.59in 3.59 \mathrm{in} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Calculate Actual Area: Calculate the actual area of the rectangle using the actual dimensions.\newlineThe formula for the area of a rectangle is length×width\text{length} \times \text{width}.\newlineActual area = 6in×4in=24in26 \, \text{in} \times 4 \, \text{in} = 24 \, \text{in}^2.
  2. Calculate Measured Area: Calculate the measured area of the rectangle using the measured dimensions.\newlineMeasured area = 5.75in×3.59in5.75 \, \text{in} \times 3.59 \, \text{in}.\newlineLet's perform the multiplication to find the measured area.\newlineMeasured area = 20.6425in220.6425 \, \text{in}^2.
  3. Calculate Absolute Error: Calculate the absolute error by subtracting the measured area from the actual area.\newlineAbsolute error = Actual area - Measured area.\newlineAbsolute error = 24in220.6425in224 \, \text{in}^2 - 20.6425 \, \text{in}^2.\newlineAbsolute error = 3.3575in23.3575 \, \text{in}^2.
  4. Calculate Relative Error: Calculate the relative error by dividing the absolute error by the actual area.\newlineRelative error = Absolute errorActual area\frac{\text{Absolute error}}{\text{Actual area}}.\newlineRelative error = 3.3575in224in2\frac{3.3575 \, \text{in}^2}{24 \, \text{in}^2}.\newlineLet's perform the division to find the relative error.\newlineRelative error 0.1398958333\approx 0.1398958333.
  5. Convert to Percentage: Convert the relative error to a percentage and round to the nearest hundredth.\newlineRelative error (as a percentage) = Relative error ×100\times 100.\newlineRelative error (as a percentage) 0.1398958333×100\approx 0.1398958333 \times 100.\newlineRelative error (as a percentage) 13.99%\approx 13.99\%.

More problems from Percent error: word problems