Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
5ft by 
3ft. Eric measures the sides to be 
4.99ft by 
3.36ft. In calculating the area, what is the relative error, to the nearest thousandth.
Answer:

The actual dimensions of a rectangle are 5ft 5 \mathrm{ft} by 3ft 3 \mathrm{ft} . Eric measures the sides to be 4.99ft 4.99 \mathrm{ft} by 3.36ft 3.36 \mathrm{ft} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 5ft 5 \mathrm{ft} by 3ft 3 \mathrm{ft} . Eric measures the sides to be 4.99ft 4.99 \mathrm{ft} by 3.36ft 3.36 \mathrm{ft} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate actual area: Calculate the actual area of the rectangle using the actual dimensions.\newlineActual area = length ×\times width = 55ft ×\times 33ft = 1515ft2^2.
  2. Calculate measured area: Calculate the measured area of the rectangle using the measured dimensions.\newlineMeasured area = length×width=4.99ft×3.36ft\text{length} \times \text{width} = 4.99\,\text{ft} \times 3.36\,\text{ft}.\newlineMeasured area = 16.7624ft216.7624\,\text{ft}^2.
  3. Calculate absolute error: Calculate the absolute error by subtracting the actual area from the measured area.\newlineAbsolute error = Measured areaActual area=16.7624ft215ft2|\text{Measured area} - \text{Actual area}| = |16.7624\,\text{ft}^2 - 15\,\text{ft}^2|.\newlineAbsolute error = 1.7624ft21.7624\,\text{ft}^2.
  4. Calculate relative error: Calculate the relative error by dividing the absolute error by the actual area and then multiplying by 100100 to get the percentage.\newlineRelative error = (Absolute error/Actual area)×100(\text{Absolute error} / \text{Actual area}) \times 100.\newlineRelative error = (1.7624ft2/15ft2)×100(1.7624\,\text{ft}^2 / 15\,\text{ft}^2) \times 100.\newlineRelative error = 0.11749333×1000.11749333\ldots \times 100.\newlineRelative error = 11.749333%11.749333\ldots\%.
  5. Round relative error: Round the relative error to the nearest thousandth.\newlineRelative error 11.749%\approx 11.749\%.

More problems from Percent error: word problems