Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
3cm by 
7cm. Carter measures the sides to be 
3.17cm by 
7.32cm. In calculating the area, what is the relative error, to the nearest thousandth.
Answer:

The actual dimensions of a rectangle are 3 cm 3 \mathrm{~cm} by 7 cm 7 \mathrm{~cm} . Carter measures the sides to be 3.17 cm 3.17 \mathrm{~cm} by 7.32 cm 7.32 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 3 cm 3 \mathrm{~cm} by 7 cm 7 \mathrm{~cm} . Carter measures the sides to be 3.17 cm 3.17 \mathrm{~cm} by 7.32 cm 7.32 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Actual Area: Calculate the actual area of the rectangle.\newlineThe formula for the area of a rectangle is length×width\text{length} \times \text{width}.\newlineActual area = 3cm×7cm3\,\text{cm} \times 7\,\text{cm}.
  2. Calculate Actual Area: Perform the calculation for the actual area. Actual area = 21cm221\,\text{cm}^2.
  3. Calculate Measured Area: Calculate the measured area of the rectangle using Carter's measurements.\newlineMeasured area = 3.17cm×7.32cm3.17\,\text{cm} \times 7.32\,\text{cm}.
  4. Calculate Measured Area: Perform the calculation for the measured area. Measured area 23.2044\approx 23.2044 cm2^2 (rounded to four decimal places for precision in later calculations).
  5. Calculate Absolute Error: Calculate the absolute error.\newlineAbsolute error = Measured areaActual area|\text{Measured area} - \text{Actual area}|.\newlineAbsolute error 23.2044 cm221 cm2\approx |23.2044 \text{ cm}^2 - 21 \text{ cm}^2|.
  6. Calculate Absolute Error: Perform the calculation for the absolute error. Absolute error 2.2044\approx 2.2044 cm2^2.
  7. Calculate Relative Error: Calculate the relative error.\newlineRelative error = (Absolute error/Actual area)(\text{Absolute error} / \text{Actual area}).
  8. Calculate Relative Error: Perform the calculation for the relative error. Relative error (2.2044cm2/21cm2)\approx (2.2044 \, \text{cm}^2 / 21 \, \text{cm}^2).
  9. Convert Relative Error: Convert the relative error to a decimal rounded to the nearest thousandth.\newlineRelative error 0.105\approx 0.105 (rounded to three decimal places).
  10. Convert Relative Error: Convert the decimal to a percentage by multiplying by 100100. Relative error percentage 0.105×100\approx 0.105 \times 100.
  11. Calculate Relative Error Percentage: Perform the calculation for the relative error percentage.\newlineRelative error percentage 10.5%\approx 10.5\%.

More problems from Percent error: word problems