Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
3cm by 
3cm. Carter measures the sides to be 
2.75cm by 
2.78cm. In calculating the area, what is the relative error, to the nearest hundredth.
Answer:

The actual dimensions of a rectangle are 3 cm 3 \mathrm{~cm} by 3 cm 3 \mathrm{~cm} . Carter measures the sides to be 2.75 cm 2.75 \mathrm{~cm} by 2.78 cm 2.78 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 3 cm 3 \mathrm{~cm} by 3 cm 3 \mathrm{~cm} . Carter measures the sides to be 2.75 cm 2.75 \mathrm{~cm} by 2.78 cm 2.78 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Calculate Actual Area: To find the relative error, we first need to calculate the actual area and the measured area of the rectangle.\newlineThe actual area is the product of the actual length and width.\newlineActual area = Actual length ×\times Actual width\newlineActual area = 3cm3\,\text{cm} ×\times 3cm3\,\text{cm}\newlineActual area = 9cm29\,\text{cm}^2
  2. Calculate Measured Area: Next, we calculate the measured area using the measured dimensions.\newlineMeasured area = Measured length ×\times Measured width\newlineMeasured area = 2.75cm×2.78cm2.75\,\text{cm} \times 2.78\,\text{cm}\newlineMeasured area = 7.645cm27.645\,\text{cm}^2
  3. Find Absolute Error: Now, we find the absolute error, which is the difference between the actual area and the measured area.\newlineAbsolute error = Actual areaMeasured area|\text{Actual area} - \text{Measured area}|\newlineAbsolute error = 9cm27.645cm2|9\text{cm}^2 - 7.645\text{cm}^2|\newlineAbsolute error = 1.355cm21.355\text{cm}^2
  4. Calculate Relative Error: The relative error is the absolute error divided by the actual area, usually expressed as a percentage.\newlineRelative error = (Absolute error/Actual area)×100%(\text{Absolute error} / \text{Actual area}) \times 100\%\newlineRelative error = (1.355cm2/9cm2)×100%(1.355\,\text{cm}^2 / 9\,\text{cm}^2) \times 100\%\newlineRelative error = 0.1506×100%0.1506 \times 100\%\newlineRelative error = 15.06%15.06\%
  5. Round Relative Error: Finally, we round the relative error to the nearest hundredth.\newlineRounded relative error = 15.06%15.06\% (rounded to two decimal places)

More problems from Percent error: word problems