Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
10cm by 
6cm. David measures the sides to be 
9.68cm by 
6.04cm. In calculating the area, what is the relative error, to the nearest hundredth.
Answer:

The actual dimensions of a rectangle are 10 cm 10 \mathrm{~cm} by 6 cm 6 \mathrm{~cm} . David measures the sides to be 9.68 cm 9.68 \mathrm{~cm} by 6.04 cm 6.04 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 10 cm 10 \mathrm{~cm} by 6 cm 6 \mathrm{~cm} . David measures the sides to be 9.68 cm 9.68 \mathrm{~cm} by 6.04 cm 6.04 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Calculate Actual Area: Calculate the actual area of the rectangle using the actual dimensions.\newlineThe formula for the area of a rectangle is length×width\text{length} \times \text{width}.\newlineActual area = 10cm×6cm=60cm210\,\text{cm} \times 6\,\text{cm} = 60\,\text{cm}^2.
  2. Calculate Measured Area: Calculate the measured area of the rectangle using the measured dimensions.\newlineMeasured area = 9.68cm×6.04cm9.68\,\text{cm} \times 6.04\,\text{cm}.\newlineLet's perform the multiplication to find the measured area.\newlineMeasured area = 58.4512cm258.4512\,\text{cm}^2.
  3. Calculate Absolute Error: Calculate the absolute error by subtracting the actual area from the measured area.\newlineAbsolute error = Measured areaActual area|\text{Measured area} - \text{Actual area}|.\newlineAbsolute error = 58.4512cm260cm2|58.4512\,\text{cm}^2 - 60\,\text{cm}^2|.\newlineAbsolute error = 1.5488cm2|-1.5488\,\text{cm}^2|.\newlineSince we are looking for the absolute value, we take the positive value of the result.\newlineAbsolute error = 1.5488cm21.5488\,\text{cm}^2.
  4. Calculate Relative Error: Calculate the relative error by dividing the absolute error by the actual area and then multiplying by 100100 to get the percentage.Relative error=Absolute errorActual area×100\text{Relative error} = \frac{\text{Absolute error}}{\text{Actual area}} \times 100.Relative error=1.5488cm260cm2×100\text{Relative error} = \frac{1.5488\,\text{cm}^2}{60\,\text{cm}^2} \times 100.Let's perform the division and multiplication to find the relative error.Relative error=(0.02581333)×100\text{Relative error} = (0.02581333\ldots) \times 100.Relative error=2.581333%\text{Relative error} = 2.581333\ldots\%.
  5. Round Relative Error: Round the relative error to the nearest hundredth.\newlineRelative error 2.58%\approx 2.58\%.

More problems from Percent error: word problems