Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

sum_(n=1)^(oo)(n+1)/(n!)
Study if it converges or diverges using Ratio test.

n=1n+1n! \sum_{n=1}^{\infty} \frac{n+1}{n !} \newlineStudy if it converges or diverges using Ratio test.

Full solution

Q. n=1n+1n! \sum_{n=1}^{\infty} \frac{n+1}{n !} \newlineStudy if it converges or diverges using Ratio test.
  1. Write general term: Write down the general term of the series. an=n+1n!a_n = \frac{n+1}{n!}
  2. Apply Ratio Test: Apply the Ratio Test to determine convergence or divergence.\newlineWe need to find the limit of an+1/an|a_{n+1}/a_n| as nn approaches infinity.
  3. Calculate an+1a_{n+1}: Calculate an+1a_{n+1}.an+1=n+2(n+1)!a_{n+1} = \frac{n+2}{(n+1)!}
  4. Set up ratio: Set up the ratio an+1an\left|\frac{a_{n+1}}{a_n}\right|.\left|\frac{a_{n+\(1\)}}{a_n}\right| = \left|\frac{\frac{n+\(2\)}{(n+\(1\))!}}{\frac{n+\(1\)}{n!}}\right|
  5. Simplify the ratio: Simplify the ratio.\(\newlinean+1an=(n+2)(n+1)n!((n+1)!)\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(n+2)}{(n+1)} \cdot \frac{n!}{((n+1)!)}\right|\newlinean+1an=(n+2)(n+1)2\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(n+2)}{(n+1)^2}\right|
  6. Take limit: Take the limit of the ratio as nn approaches infinity.limnn+2(n+1)2\lim_{n\to\infty} \left|\frac{n+2}{(n+1)^2}\right|
  7. Evaluate limit: Evaluate the limit. \newlinelimnn+2(n+1)2=limn1n+1\lim_{n\to\infty} \left|\frac{n+2}{(n+1)^2}\right| = \lim_{n\to\infty} \left|\frac{1}{n+1}\right|
  8. Limit is 00: The limit is 00 because as nn gets larger, 1(n+1)\frac{1}{(n+1)} approaches 00.limn1(n+1)=0\lim_{n\to\infty} \left|\frac{1}{(n+1)}\right| = 0
  9. Ratio Test conclusion: Since the limit is less than 11, the Ratio Test tells us the series converges.

More problems from Negative Exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago