Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the following equations.
(a) 
sqrt(3x-5)+3=x

Solve the following equations.\newline(a) 3x5+3=x \sqrt{3 x-5}+3=x

Full solution

Q. Solve the following equations.\newline(a) 3x5+3=x \sqrt{3 x-5}+3=x
  1. Isolate Square Root: Isolate the square root on one side of the equation. 3x5=x3\sqrt{3x-5} = x - 3
  2. Square Both Sides: Square both sides to eliminate the square root.\newline(3x5)2=(x3)2(\sqrt{3x-5})^2 = (x - 3)^2\newline3x5=(x3)(x3)3x - 5 = (x - 3)(x - 3)
  3. Expand Equation: Expand the right side of the equation. 3x5=x26x+93x - 5 = x^2 - 6x + 9
  4. Combine Like Terms: Move all terms to one side to set the equation to zero and combine like terms.\newline0=x26x3x+9+50 = x^2 - 6x - 3x + 9 + 5\newline0=x29x+140 = x^2 - 9x + 14
  5. Factor Quadratic Equation: Factor the quadratic equation.\newline0=(x7)(x2)0 = (x - 7)(x - 2)
  6. Solve for x: Set each factor equal to zero and solve for x.\newlinex7=0x - 7 = 0 or x2=0x - 2 = 0\newlinex=7x = 7 or x=2x = 2
  7. Check Solutions: Check both solutions in the original equation to ensure they do not result in taking the square root of a negative number or any other invalid operation.\newlineFor x=7x = 7:\newline3×75+3=7\sqrt{3\times7 - 5} + 3 = 7\newline215+3=7\sqrt{21 - 5} + 3 = 7\newline16+3=7\sqrt{16} + 3 = 7\newline4+3=74 + 3 = 7\newline7=77 = 7 (Valid solution)
  8. Check Solutions: Check both solutions in the original equation to ensure they do not result in taking the square root of a negative number or any other invalid operation.\newlineFor x=7x = 7:\newline3×75+3=7\sqrt{3\times7 - 5} + 3 = 7\newline215+3=7\sqrt{21 - 5} + 3 = 7\newline16+3=7\sqrt{16} + 3 = 7\newline4+3=74 + 3 = 7\newline7=77 = 7 (Valid solution)For x=2x = 2:\newline3×25+3=2\sqrt{3\times2 - 5} + 3 = 2\newline65+3=2\sqrt{6 - 5} + 3 = 2\newline1+3=2\sqrt{1} + 3 = 2\newline3×75+3=7\sqrt{3\times7 - 5} + 3 = 700\newline3×75+3=7\sqrt{3\times7 - 5} + 3 = 711 (Invalid solution)

More problems from Find derivatives of using multiple formulae