Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation for all values of 
x.

|5x-4|-4=3x
Answer: 
x=

Solve the equation for all values of x x .\newline5x44=3x |5 x-4|-4=3 x \newlineAnswer: x= x=

Full solution

Q. Solve the equation for all values of x x .\newline5x44=3x |5 x-4|-4=3 x \newlineAnswer: x= x=
  1. Isolate Absolute Value: We are given the equation 5x44=3x|5x - 4| - 4 = 3x. To solve for xx, we first need to isolate the absolute value expression on one side of the equation.\newlineAdd 44 to both sides of the equation to isolate the absolute value.\newline5x44+4=3x+4|5x - 4| - 4 + 4 = 3x + 4\newline5x4=3x+4|5x - 4| = 3x + 4
  2. Consider Two Cases: Now we have to consider the two cases for the absolute value expression, because a=b|a| = b implies that a=ba = b or a=ba = -b.
    Case 11: 5x4=3x+45x - 4 = 3x + 4
    Case 22: 5x4=(3x+4)5x - 4 = -(3x + 4)
  3. Solve Case 11: Let's solve Case 11 first.\newline5x4=3x+45x - 4 = 3x + 4\newlineSubtract 3x3x from both sides to get the x terms on one side.\newline5x3x4=3x3x+45x - 3x - 4 = 3x - 3x + 4\newline2x4=42x - 4 = 4\newlineAdd 44 to both sides to isolate the x term.\newline2x4+4=4+42x - 4 + 4 = 4 + 4\newline2x=82x = 8\newlineDivide both sides by 22 to solve for x.\newline2x2=82\frac{2x}{2} = \frac{8}{2}\newlinex = 44
  4. Solve Case 22: Now let's solve Case 22.\newline5x4=(3x+4)5x - 4 = -(3x + 4)\newlineDistribute the negative sign on the right side.\newline5x4=3x45x - 4 = -3x - 4\newlineAdd 3x3x to both sides to get the x terms on one side.\newline5x+3x4=3x+3x45x + 3x - 4 = -3x + 3x - 4\newline8x4=48x - 4 = -4\newlineAdd 44 to both sides to isolate the x term.\newline8x4+4=4+48x - 4 + 4 = -4 + 4\newline8x=08x = 0\newlineDivide both sides by 88 to solve for x.\newline8x8=08\frac{8x}{8} = \frac{0}{8}\newlinex = 00

More problems from Evaluate absolute value expressions