Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation for all values of 
x.

|2x-6|=4x
Answer: 
x=

Solve the equation for all values of x x .\newline2x6=4x |2 x-6|=4 x \newlineAnswer: x= x=

Full solution

Q. Solve the equation for all values of x x .\newline2x6=4x |2 x-6|=4 x \newlineAnswer: x= x=
  1. Absolute Value Equation Split: We have the equation 2x6=4x|2x - 6| = 4x. The absolute value equation can be split into two separate equations, one for the positive case and one for the negative case.\newlineFor the positive case, we have 2x6=4x2x - 6 = 4x.\newlineNow, let's solve for xx.\newlineSubtract 2x2x from both sides to get 6=2x-6 = 2x.\newlineDivide both sides by 22 to isolate xx.\newlinex=3x = -3
  2. Positive Case Solution: For the negative case, we have (2x6)=4x- (2x - 6) = 4x.\newlineFirst, distribute the negative sign inside the parentheses.\newline2x+6=4x-2x + 6 = 4x\newlineNow, let's solve for xx.\newlineAdd 2x2x to both sides to get 6=6x6 = 6x.\newlineDivide both sides by 66 to isolate xx.\newlinex=1x = 1
  3. Negative Case Solution: We need to check if the solutions satisfy the original equation because when dealing with absolute values, extraneous solutions can occur.\newlineFirst, let's check x=3x = -3.\newlineSubstitute 3-3 into the original equation 2x6=4x|2x - 6| = 4x.\newline2(3)6=4(3)|2(-3) - 6| = 4(-3)\newline66=12|-6 - 6| = -12\newline12=12| -12 | = -12\newline121212 \neq -12\newlineThis means x=3x = -3 is not a solution.
  4. Check Solution - x=3x = -3: Now, let's check x=1x = 1.\newlineSubstitute 11 into the original equation 2x6=4x|2x - 6| = 4x.\newline2(1)6=4(1)|2(1) - 6| = 4(1)\newline26=4|2 - 6| = 4\newline4=4|-4| = 4\newline4=44 = 4\newlineThis means x=1x = 1 is a solution.

More problems from Evaluate absolute value expressions