Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=((xy)^(2))/(8)+y^(2)
Choose 1 answer:
(A) 
y=-(x^(2)+16)/(16+C)
(B) 
y=-(16)/(x^(2)+16+C)
(c) 
y=-(x^(3)+24 x)/(24+C)
(D) 
y=-(24)/(x^(3)+24 x+C)

Solve the equation.\newlinedydx=(xy)28+y2 \frac{d y}{d x}=\frac{(x y)^{2}}{8}+y^{2} \newlineChoose 11 answer:\newline(A) y=x2+1616+C y=-\frac{x^{2}+16}{16+C} \newline(B) y=16x2+16+C y=-\frac{16}{x^{2}+16+C} \newline(c) y=x3+24x24+C y=-\frac{x^{3}+24 x}{24+C} \newline(D) y=24x3+24x+C y=-\frac{24}{x^{3}+24 x+C}

Full solution

Q. Solve the equation.\newlinedydx=(xy)28+y2 \frac{d y}{d x}=\frac{(x y)^{2}}{8}+y^{2} \newlineChoose 11 answer:\newline(A) y=x2+1616+C y=-\frac{x^{2}+16}{16+C} \newline(B) y=16x2+16+C y=-\frac{16}{x^{2}+16+C} \newline(c) y=x3+24x24+C y=-\frac{x^{3}+24 x}{24+C} \newline(D) y=24x3+24x+C y=-\frac{24}{x^{3}+24 x+C}
  1. Recognize type of DE: Recognize the type of differential equation.\newlineThis is a first-order non-linear differential equation.
  2. Attempt separation of variables: Attempt separation of variables.\newlineAssuming y0y \neq 0, divide both sides by y2y^2:\newlinedyy2=x2y28y2+1\frac{dy}{y^2} = \frac{x^2y^2}{8y^2} + 1\newlinedyy2=x28+1\frac{dy}{y^2} = \frac{x^2}{8} + 1

More problems from Find derivatives of using multiple formulae