Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Solve the equation.
\newline
d
y
d
x
=
x
2
9
+
7
9
\frac{d y}{d x}=\frac{x^{2}}{9}+\frac{7}{9}
d
x
d
y
=
9
x
2
+
9
7
\newline
Choose
1
1
1
answer:
\newline
(A)
y
=
2
x
9
+
C
y=\frac{2 x}{9}+C
y
=
9
2
x
+
C
\newline
(B)
y
=
x
18
+
C
y=\frac{x}{18}+C
y
=
18
x
+
C
\newline
(C)
y
=
x
3
3
+
7
x
9
+
C
y=\frac{x^{3}}{3}+\frac{7 x}{9}+C
y
=
3
x
3
+
9
7
x
+
C
\newline
(D)
y
=
x
3
27
+
7
x
9
+
C
y=\frac{x^{3}}{27}+\frac{7 x}{9}+C
y
=
27
x
3
+
9
7
x
+
C
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
Solve the equation.
\newline
d
y
d
x
=
x
2
9
+
7
9
\frac{d y}{d x}=\frac{x^{2}}{9}+\frac{7}{9}
d
x
d
y
=
9
x
2
+
9
7
\newline
Choose
1
1
1
answer:
\newline
(A)
y
=
2
x
9
+
C
y=\frac{2 x}{9}+C
y
=
9
2
x
+
C
\newline
(B)
y
=
x
18
+
C
y=\frac{x}{18}+C
y
=
18
x
+
C
\newline
(C)
y
=
x
3
3
+
7
x
9
+
C
y=\frac{x^{3}}{3}+\frac{7 x}{9}+C
y
=
3
x
3
+
9
7
x
+
C
\newline
(D)
y
=
x
3
27
+
7
x
9
+
C
y=\frac{x^{3}}{27}+\frac{7 x}{9}+C
y
=
27
x
3
+
9
7
x
+
C
Integrate with respect to
x
x
x
:
Integrate both sides of the equation with respect to
x
x
x
.
∫
d
y
d
x
d
x
=
∫
(
x
2
9
+
7
9
)
d
x
\int \frac{dy}{dx} dx = \int \left(\frac{x^{2}}{9} + \frac{7}{9}\right) dx
∫
d
x
d
y
d
x
=
∫
(
9
x
2
+
9
7
)
d
x
y
=
∫
(
x
2
9
)
d
x
+
∫
(
7
9
)
d
x
y = \int \left(\frac{x^{2}}{9}\right) dx + \int \left(\frac{7}{9}\right) dx
y
=
∫
(
9
x
2
)
d
x
+
∫
(
9
7
)
d
x
Calculate integral of
x
2
/
9
x^2/9
x
2
/9
:
Calculate the integral of
x
2
/
9
x^2/9
x
2
/9
.
∫
(
x
2
/
9
)
d
x
=
(
1
/
9
)
∫
x
2
d
x
=
(
1
/
9
)
(
x
3
/
3
)
=
(
x
3
)
/
27
\int(x^{2}/9) dx = (1/9)\int x^2 dx = (1/9)(x^{3}/3) = (x^{3})/27
∫
(
x
2
/9
)
d
x
=
(
1/9
)
∫
x
2
d
x
=
(
1/9
)
(
x
3
/3
)
=
(
x
3
)
/27
Calculate integral of
7
9
\frac{7}{9}
9
7
:
Calculate the integral of
7
9
\frac{7}{9}
9
7
.
∫
(
7
9
)
d
x
=
(
7
9
)
x
\int(\frac{7}{9}) \, dx = (\frac{7}{9})x
∫
(
9
7
)
d
x
=
(
9
7
)
x
Combine and add constant:
Combine the results and add the constant of integration
C
C
C
.
y
=
x
3
27
+
7
9
x
+
C
y = \frac{x^{3}}{27} + \frac{7}{9}x + C
y
=
27
x
3
+
9
7
x
+
C
More problems from Find derivatives of using multiple formulae
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
cos
(
x
)
f(x) = \cos(x)
f
(
x
)
=
cos
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
(
x
)
f(x) = \tan(x)
f
(
x
)
=
tan
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
f(x) = e^x
f
(
x
)
=
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
ln
(
x
)
f(x) = \ln(x)
f
(
x
)
=
ln
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
−
1
x
f(x) = \tan^{-1}{x}
f
(
x
)
=
tan
−
1
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
e
x
f(x) = x e^x
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
x
f(x) = \frac{e^x}{x}
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
(
x
+
1
)
f(x) = e^{(x + 1)}
f
(
x
)
=
e
(
x
+
1
)
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
+
3
f(x) = \sqrt{x+3}
f
(
x
)
=
x
+
3
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
g
(
x
)
g(x)
g
(
x
)
.
\newline
g
(
x
)
=
ln
(
2
x
)
g(x) = \ln(2x)
g
(
x
)
=
ln
(
2
x
)
\newline
g
′
(
x
)
=
g^{\prime}(x) =
g
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant