Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation.

(dy)/(dx)=(x^(2))/(10 y)-(2x)/(5y)
Choose 1 answer:
(A) 
y=+-sqrt((x^(3))/(15)-(2x^(2))/(5)+C)
(B) 
y=+-sqrt((x^(3))/(15)-(2x^(2))/(5))+C
(C) 
y=Ce^((10x^(3))/(3)-20x^(2))
(D) 
y=+-e^((10x^(3))/(3)-20x^(2))+C

Solve the equation.\newlinedydx=x210y2x5y \frac{d y}{d x}=\frac{x^{2}}{10 y}-\frac{2 x}{5 y} \newlineChoose 11 answer:\newline(A) y=±x3152x25+C y= \pm \sqrt{\frac{x^{3}}{15}-\frac{2 x^{2}}{5}+C} \newline(B) y=±x3152x25+C y= \pm \sqrt{\frac{x^{3}}{15}-\frac{2 x^{2}}{5}}+C \newline(C) y=Ce10x3320x2 y=C e^{\frac{10 x^{3}}{3}-20 x^{2}} \newline(D) y=±e10x3320x2+C y= \pm e^{\frac{10 x^{3}}{3}-20 x^{2}}+C

Full solution

Q. Solve the equation.\newlinedydx=x210y2x5y \frac{d y}{d x}=\frac{x^{2}}{10 y}-\frac{2 x}{5 y} \newlineChoose 11 answer:\newline(A) y=±x3152x25+C y= \pm \sqrt{\frac{x^{3}}{15}-\frac{2 x^{2}}{5}+C} \newline(B) y=±x3152x25+C y= \pm \sqrt{\frac{x^{3}}{15}-\frac{2 x^{2}}{5}}+C \newline(C) y=Ce10x3320x2 y=C e^{\frac{10 x^{3}}{3}-20 x^{2}} \newline(D) y=±e10x3320x2+C y= \pm e^{\frac{10 x^{3}}{3}-20 x^{2}}+C
  1. Combine terms over common denominator: We are given the differential equation:\newline(dydx)=x210y2x5y(\frac{dy}{dx}) = \frac{x^2}{10y} - \frac{2x}{5y}\newlineTo solve this, we will first combine the terms on the right-hand side over a common denominator.
  2. Separate variables and multiply: Now, we will separate variables by multiplying both sides by yy and dxdx, and dividing by 3x2-3x^2.ydy=(13)x2dxy \, dy = \left(-\frac{1}{3}\right) x^2 \, dx
  3. Integrate both sides: Next, we integrate both sides of the equation.\newlineydy=(13)x2dx\int y \, dy = \int (-\frac{1}{3}) x^2 \, dx\newline12y2=(19)x3+C\frac{1}{2}y^2 = (-\frac{1}{9})x^3 + C
  4. Solve for y: Now, we solve for y by taking the square root of both sides.\newliney=±(29)x3+2Cy = \pm\sqrt{\left(\frac{2}{9}\right)x^3 + 2C}

More problems from Find derivatives of using multiple formulae