Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation 
3x^(2)-18 x+23=x^(2)-10 to the nearest tenth.
Answer: 
x=

Solve the equation 3x218x+23=x210 3 x^{2}-18 x+23=x^{2}-10 to the nearest tenth.\newlineAnswer: x= x=

Full solution

Q. Solve the equation 3x218x+23=x210 3 x^{2}-18 x+23=x^{2}-10 to the nearest tenth.\newlineAnswer: x= x=
  1. Combine and Rearrange Terms: First, we need to combine like terms and move all terms to one side of the equation to set it equal to zero.\newline3x218x+23=x2103x^2 - 18x + 23 = x^2 - 10\newlineSubtract x2x^2 from both sides and add 1010 to both sides to get:\newline3x2x218x+23+10=03x^2 - x^2 - 18x + 23 + 10 = 0
  2. Combine Like Terms: Now, combine like terms.\newline(3x2x2)18x+(23+10)=0(3x^2 - x^2) - 18x + (23 + 10) = 0\newline2x218x+33=02x^2 - 18x + 33 = 0
  3. Solve Quadratic Equation: Next, we need to solve the quadratic equation 2x218x+33=02x^2 - 18x + 33 = 0. We can use the quadratic formula, x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=2a = 2, b=18b = -18, and c=33c = 33. First, calculate the discriminant (b24acb^2 - 4ac): (18)24(2)(33)=324264=60(-18)^2 - 4(2)(33) = 324 - 264 = 60
  4. Calculate Discriminant: Now, plug the values into the quadratic formula:\newlinex=(18)±6022x = \frac{-(-18) \pm \sqrt{60}}{2 \cdot 2}\newlinex=18±604x = \frac{18 \pm \sqrt{60}}{4}
  5. Apply Quadratic Formula: Simplify the square root and the fraction:\newlinex=18±7.7464x = \frac{18 \pm 7.746}{4}\newlineWe will have two solutions for xx:\newlinex1=18+7.7464x_1 = \frac{18 + 7.746}{4}\newlinex2=187.7464x_2 = \frac{18 - 7.746}{4}
  6. Calculate Solutions: Calculate the two possible values for xx:x1=25.7464x_1 = \frac{25.746}{4}x16.4x_1 \approx 6.4 (to the nearest tenth)x2=10.2544x_2 = \frac{10.254}{4}x22.6x_2 \approx 2.6 (to the nearest tenth)

More problems from Solve linear equations: mixed review