Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation 
2x^(2)+8x-17=0 to the nearest tenth.
Answer: 
x=

Solve the equation 2x2+8x17=0 2 x^{2}+8 x-17=0 to the nearest tenth.\newlineAnswer: x= x=

Full solution

Q. Solve the equation 2x2+8x17=0 2 x^{2}+8 x-17=0 to the nearest tenth.\newlineAnswer: x= x=
  1. Identify Equation Type: Identify the type of equation.\newlineWe have a quadratic equation in the form ax2+bx+c=0ax^2 + bx + c = 0, where a=2a = 2, b=8b = 8, and c=17c = -17.
  2. Use Quadratic Formula: Use the quadratic formula to solve for xx. The quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
  3. Calculate Discriminant: Calculate the discriminant (b24ac)(b^2 - 4ac). Discriminant = (8)24(2)(17)=64+136=200(8)^2 - 4(2)(-17) = 64 + 136 = 200.
  4. Calculate x Values: Calculate the two possible values for x using the quadratic formula.\newlinex=8±2002×2x = \frac{-8 \pm \sqrt{200}}{2 \times 2}\newlinex=8±2004x = \frac{-8 \pm \sqrt{200}}{4}
  5. Simplify Square Root: Simplify the square root of the discriminant.\newline200=(1002)=1002=102\sqrt{200} = \sqrt{(100 \cdot 2)} = \sqrt{100} \cdot \sqrt{2} = 10\sqrt{2}
  6. Substitute Simplified Root: Substitute the simplified square root back into the formula.\newlinex=8±1024x = \frac{{-8 \pm 10\sqrt{2}}}{{4}}
  7. Calculate Solutions: Calculate the two solutions for xx.\newlineFirst solution: x=8+1024x = \frac{{-8 + 10\sqrt{2}}}{{4}}\newlineSecond solution: x=81024x = \frac{{-8 - 10\sqrt{2}}}{{4}}
  8. Simplify Solutions: Simplify both solutions.\newlineFirst solution: x(8+14.14)/46.14/41.5x \approx (-8 + 14.14) / 4 \approx 6.14 / 4 \approx 1.5 (to the nearest tenth)\newlineSecond solution: x(814.14)/422.14/45.5x \approx (-8 - 14.14) / 4 \approx -22.14 / 4 \approx -5.5 (to the nearest tenth)

More problems from Solve linear equations: mixed review