Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the equation 
2x^(2)-7x-36=-2x^(2)-26 to the nearest tenth.
Answer: 
x=

Solve the equation 2x27x36=2x226 2 x^{2}-7 x-36=-2 x^{2}-26 to the nearest tenth.\newlineAnswer: x= x=

Full solution

Q. Solve the equation 2x27x36=2x226 2 x^{2}-7 x-36=-2 x^{2}-26 to the nearest tenth.\newlineAnswer: x= x=
  1. Combine Terms: Combine like terms and move all terms to one side of the equation to set it equal to zero.\newline2x27x36=2x2262x^{2} - 7x - 36 = -2x^{2} - 26\newline2x2+2x27x36+26=02x^{2} + 2x^{2} - 7x - 36 + 26 = 0\newline4x27x10=04x^{2} - 7x - 10 = 0
  2. Quadratic Equation: Now, we need to solve the quadratic equation 4x27x10=04x^{2} - 7x - 10 = 0. We can use the quadratic formula, x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=4a = 4, b=7b = -7, and c=10c = -10.
  3. Calculate Discriminant: First, calculate the discriminant, which is b24acb^2 - 4ac.\newlineDiscriminant = (7)24(4)(10)(-7)^2 - 4(4)(-10)\newlineDiscriminant = 49+16049 + 160\newlineDiscriminant = 209209
  4. Apply Quadratic Formula: Since the discriminant is positive, there are two real solutions. Now, apply the quadratic formula.\newlinex=(7)±20924x = \frac{-(-7) \pm \sqrt{209}}{2 \cdot 4}\newlinex=7±2098x = \frac{7 \pm \sqrt{209}}{8}
  5. Calculate Values: Calculate the two possible values for xx.x1=7+2098x_1 = \frac{7 + \sqrt{209}}{8}x2=72098x_2 = \frac{7 - \sqrt{209}}{8}
  6. Final Solutions: Use a calculator to find the numerical values to the nearest tenth.\newlinex1(7+14.5)/8x_1 \approx (7 + 14.5) / 8\newlinex121.5/8x_1 \approx 21.5 / 8\newlinex12.7x_1 \approx 2.7\newlinex2(714.5)/8x_2 \approx (7 - 14.5) / 8\newlinex27.5/8x_2 \approx -7.5 / 8\newlinex20.9x_2 \approx -0.9

More problems from Solve linear equations: mixed review