Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
y :

|4y-2|+7=37

Solve for y y :\newline4y2+7=37 |4 y-2|+7=37

Full solution

Q. Solve for y y :\newline4y2+7=37 |4 y-2|+7=37
  1. Isolate absolute value expression: First, we need to isolate the absolute value expression by subtracting 77 from both sides of the equation.\newline4y2+7=37|4y - 2| + 7 = 37\newline4y2=377|4y - 2| = 37 - 7\newline4y2=30|4y - 2| = 30
  2. Consider two cases: Next, we need to consider the two cases for the absolute value expression: one where the expression inside the absolute value is positive, and one where it is negative.\newlineCase 11: 4y2=304y - 2 = 30\newlineCase 22: 4y2=304y - 2 = -30
  3. Solve for y in Case 11: Now we solve for y in Case 11.\newline4y2=304y - 2 = 30\newlineAdd 22 to both sides.\newline4y=30+24y = 30 + 2\newline4y=324y = 32\newlineNow divide by 44.\newliney=324y = \frac{32}{4}\newliney=8y = 8
  4. Solve for y in Case 22: Next, we solve for y in Case 22.\newline4y2=304y - 2 = -30\newlineAdd 22 to both sides.\newline4y=30+24y = -30 + 2\newline4y=284y = -28\newlineNow divide by 44.\newliney=28/4y = -28 / 4\newliney=7y = -7

More problems from Integer inequalities with absolute values