We want to find the intersection points of the graphs given by the following system of equations:{x−y=−4y=5(x+1)2−3One of the intersection points is (−2,2).Find the other intersection point. Your answer must be exact.
Q. We want to find the intersection points of the graphs given by the following system of equations:{x−y=−4y=5(x+1)2−3One of the intersection points is (−2,2).Find the other intersection point. Your answer must be exact.
Write down equations: First, let's write down the system of equations we need to solve:1) x−y=−42) y=5(x+1)2−3
Substitute and solve for : We can substitute the expression for from the second equation into the first equation to solve for :
Set equation to zero: Next, we add 444 to both sides of the equation to set it to zero:\newline−5x2−9x−2+4=0-5x^2 - 9x - 2 + 4 = 0−5x2−9x−2+4=0\newline−5x2−9x+2=0-5x^2 - 9x + 2 = 0−5x2−9x+2=0
Calculate discriminant: We now have a quadratic equation. Let's solve for x using the quadratic formula, x=−b±b2−4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2a−b±b2−4ac, where a=−5a = -5a=−5, b=−9b = -9b=−9, and c=2c = 2c=2.
Solve for x: First, calculate the discriminant b2−4acb^2 - 4acb2−4ac:Discriminant=(−9)2−4(−5)(2)=81+40=121\text{Discriminant} = (-9)^2 - 4(-5)(2) = 81 + 40 = 121Discriminant=(−9)2−4(−5)(2)=81+40=121
Find y-coordinate: Since the discriminant is positive, we have two real solutions. Now, calculate the two possible values for x:\newlinex1=−(−9)+1212⋅−5=9+11−10=20−10=−2x_1 = \frac{-(-9) + \sqrt{121}}{2 \cdot -5} = \frac{9 + 11}{-10} = \frac{20}{-10} = -2x1=2⋅−5−(−9)+121=−109+11=−1020=−2\newlinex2=−(−9)−1212⋅−5=9−11−10=−2−10=−15x_2 = \frac{-(-9) - \sqrt{121}}{2 \cdot -5} = \frac{9 - 11}{-10} = \frac{-2}{-10} = -\frac{1}{5}x2=2⋅−5−(−9)−121=−109−11=−10−2=−51
Simplify expression: We already know that one of the intersection points is (−2,2)(-2, 2)(−2,2), which corresponds to x1=−2x_1 = -2x1=−2. Therefore, the other intersection point must correspond to x2=−15x_2 = -\frac{1}{5}x2=−51.
Calculate y: Now, let's find the y-coordinate for the intersection point when x=−15x = -\frac{1}{5}x=−51 by substituting xxx into the second equation:\newliney=5(−15+1)2−3y = 5(-\frac{1}{5} + 1)^2 - 3y=5(−51+1)2−3
Calculate y: Now, let's find the y-coordinate for the intersection point when x=−15x = -\frac{1}{5}x=−51 by substituting xxx into the second equation:\newliney=5(−15+1)2−3y = 5\left(-\frac{1}{5} + 1\right)^2 - 3y=5(−51+1)2−3Simplify the expression inside the parentheses:\newliney=5(45)2−3y = 5\left(\frac{4}{5}\right)^2 - 3y=5(54)2−3
Calculate y: Now, let's find the y-coordinate for the intersection point when x=−15x = -\frac{1}{5}x=−51 by substituting xxx into the second equation:\newliney=5(−15+1)2−3y = 5\left(-\frac{1}{5} + 1\right)^2 - 3y=5(−51+1)2−3Simplify the expression inside the parentheses:\newliney=5(45)2−3y = 5\left(\frac{4}{5}\right)^2 - 3y=5(54)2−3Calculate the square and multiply by 555:\newliney=5(1625)−3y = 5\left(\frac{16}{25}\right) - 3y=5(2516)−3\newliney=5×1625−3y = 5 \times \frac{16}{25} - 3y=5×2516−3\newliney=165−3y = \frac{16}{5} - 3y=516−3
Calculate y: Now, let's find the y-coordinate for the intersection point when x=−15x = -\frac{1}{5}x=−51 by substituting xxx into the second equation:\newliney=5(−15+1)2−3y = 5\left(-\frac{1}{5} + 1\right)^2 - 3y=5(−51+1)2−3Simplify the expression inside the parentheses:\newliney=5(45)2−3y = 5\left(\frac{4}{5}\right)^2 - 3y=5(54)2−3Calculate the square and multiply by 555:\newliney=5(1625)−3y = 5\left(\frac{16}{25}\right) - 3y=5(2516)−3\newliney=5×1625−3y = 5 \times \frac{16}{25} - 3y=5×2516−3\newliney=165−3y = \frac{16}{5} - 3y=516−3Convert 333 to a fraction with a denominator of 555 to combine the terms:\newliney=165−155y = \frac{16}{5} - \frac{15}{5}y=516−515\newliney=(16−15)5y = \frac{(16 - 15)}{5}y=5(16−15)\newliney=15y = \frac{1}{5}y=51
More problems from Quantities that combine to zero: word problems