Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
x,y, and 
z

{:[x+6y-z=-5],[-2x-5y+2z=3],[x-(4)/(5)y+z=(19)/(5)]:}

Solve for x,y x, y , and z z \newlinex+6yz=52x5y+2z=3x45y+z=195 \begin{array}{l} x+6 y-z=-5 \\ -2 x-5 y+2 z=3 \\ x-\frac{4}{5} y+z=\frac{19}{5} \end{array}

Full solution

Q. Solve for x,y x, y , and z z \newlinex+6yz=52x5y+2z=3x45y+z=195 \begin{array}{l} x+6 y-z=-5 \\ -2 x-5 y+2 z=3 \\ x-\frac{4}{5} y+z=\frac{19}{5} \end{array}
  1. Write Equations: Write down the system of equations.\newlineWe have the following system of linear equations:\newline11) x+6yz=5x + 6y - z = -5\newline22) 2x5y+2z=3-2x - 5y + 2z = 3\newline33) x(45)y+z=(195)x - \left(\frac{4}{5}\right)y + z = \left(\frac{19}{5}\right)
  2. Eliminate Fraction: Multiply the third equation by 55 to eliminate the fraction.\newline5(x(45)y+z)=5×(195)5(x - (\frac{4}{5})y + z) = 5 \times (\frac{19}{5})\newlineThis simplifies to:\newline5x4y+5z=195x - 4y + 5z = 19\newlineNow we have the system:\newline11) x+6yz=5x + 6y - z = -5\newline22) 2x5y+2z=3-2x - 5y + 2z = 3\newline33) 5x4y+5z=195x - 4y + 5z = 19
  3. Eliminate Variable xx: Use the method of elimination to eliminate one variable. Let's eliminate xx by adding equation 11 and equation 22.(x+6yz)+(2x5y+2z)=5+3(x + 6y - z) + (-2x - 5y + 2z) = -5 + 3This simplifies to:x+y+z=2-x + y + z = -2Now we have the system:1)x+y+z=21)\, -x + y + z = -22)2x5y+2z=32)\, -2x - 5y + 2z = 33)5x4y+5z=193)\, 5x - 4y + 5z = 19
  4. Eliminate Variable xx: Multiply equation 11 by 22 and add it to equation 22 to eliminate xx.2(x+y+z)+(2x5y+2z)=2(2)+32(-x + y + z) + (-2x - 5y + 2z) = 2(-2) + 3This simplifies to:2x+2y+2z2x5y+2z=4+3-2x + 2y + 2z - 2x - 5y + 2z = -4 + 3Combining like terms, we get:4x3y+4z=1-4x - 3y + 4z = -1Now we have the system:11) x+y+z=2-x + y + z = -222) 4x3y+4z=1-4x - 3y + 4z = -133) 5x4y+5z=195x - 4y + 5z = 19
  5. Eliminate Variable x: Multiply equation 11 by 55 and add it to equation 33 to eliminate x.\newline5(x+y+z)+(5x4y+5z)=5(2)+195(-x + y + z) + (5x - 4y + 5z) = 5(-2) + 19\newlineThis simplifies to:\newline5x+5y+5z+5x4y+5z=10+19-5x + 5y + 5z + 5x - 4y + 5z = -10 + 19\newlineCombining like terms, we get:\newliney+10z=9y + 10z = 9\newlineNow we have the system:\newline11) x+y+z=2-x + y + z = -2\newline22) 4x3y+4z=1-4x - 3y + 4z = -1\newline33) y+10z=9y + 10z = 9
  6. Solve for yy: Solve equation 33 for yy.y=910zy = 9 - 10zNow we can substitute this expression for yy into equations 11 and 22.
  7. Substitute y into Eq 11: Substitute y=910zy = 9 - 10z into equation 11.x+(910z)+z=2-x + (9 - 10z) + z = -2 This simplifies to:x+99z=2-x + 9 - 9z = -2 Now solve for x:x=29+9z-x = -2 - 9 + 9z x=119zx = 11 - 9z
  8. Substitute yy into Eq 22: Substitute y=910zy = 9 - 10z into equation 22.\newline4x3(910z)+4z=1-4x - 3(9 - 10z) + 4z = -1\newlineThis simplifies to:\newline4x27+30z+4z=1-4x - 27 + 30z + 4z = -1\newlineNow solve for xx:\newline4x=1+2734z-4x = -1 + 27 - 34z\newlinex=(2834z)/4x = (28 - 34z) / -4\newlinex=7+(34/4)zx = -7 + (34/4)z\newlinex=7+(17/2)zx = -7 + (17/2)z
  9. Solve for z: Equate the two expressions for xx and solve for zz.119z=7+(172)z11 - 9z = -7 + (\frac{17}{2})zMultiply through by 22 to eliminate the fraction:2218z=14+17z22 - 18z = -14 + 17zCombine like terms:22+14=17z+18z22 + 14 = 17z + 18z36=35z36 = 35zDivide by 3535:z=3635z = \frac{36}{35}z=1.02857142857z = 1.02857142857 (approximately)
  10. Substitute zz into yy: Substitute zz back into the expression for yy.
    y=910zy = 9 - 10z
    y=910(3635)y = 9 - 10(\frac{36}{35})
    y=936035y = 9 - \frac{360}{35}
    y=910.2857142857y = 9 - 10.2857142857
    y=1.2857142857y = -1.2857142857 (approximately)
  11. Substitute zz into xx: Substitute zz back into the expression for xx.
    x=119zx = 11 - 9z
    x=119(3635)x = 11 - 9(\frac{36}{35})
    x=1132435x = 11 - \frac{324}{35}
    x=119.25714285714x = 11 - 9.25714285714
    x=1.74285714286x = 1.74285714286 (approximately)

More problems from Sine and cosine of complementary angles