Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system:

{:[x+6y=17],[-x+3y=-8]:}

Solve the system:\newlinex+6y=17x+3y=8 \begin{array}{c} x+6 y=17 \\ -x+3 y=-8 \end{array}

Full solution

Q. Solve the system:\newlinex+6y=17x+3y=8 \begin{array}{c} x+6 y=17 \\ -x+3 y=-8 \end{array}
  1. Write Equations: Write down the system of equations.\newlineWe have the following system of equations:\newline11) x+6y=17x + 6y = 17\newline22) x+3y=8-x + 3y = -8
  2. Add Equations: Add the two equations together to eliminate xx.\newline(1)+(2)(1) + (2) gives us:\newlinex+6yx+3y=178x + 6y - x + 3y = 17 - 8\newlineThis simplifies to:\newline9y=99y = 9
  3. Solve for y: Solve for y.\newlineDivide both sides of the equation by 99 to isolate y:\newline9y9=99\frac{9y}{9} = \frac{9}{9}\newliney=1y = 1
  4. Substitute and Solve: Substitute the value of yy back into one of the original equations to solve for xx. Using equation (11), x+6y=17x + 6y = 17, we substitute y=1y = 1: x+6(1)=17x + 6(1) = 17 x+6=17x + 6 = 17
  5. Final Solution: Solve for xx.\newlineSubtract 66 from both sides of the equation to isolate xx:\newlinex+66=176x + 6 - 6 = 17 - 6\newlinex=11x = 11

More problems from Sine and cosine of complementary angles