Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(7)(8x)+2log_(7)(8)=2
Answer:

Solve for the exact value of x x .\newlinelog7(8x)+2log7(8)=2 \log _{7}(8 x)+2 \log _{7}(8)=2 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog7(8x)+2log7(8)=2 \log _{7}(8 x)+2 \log _{7}(8)=2 \newlineAnswer:
  1. Apply Power Rule: Apply the power rule of logarithms to the second term.\newlineThe power rule states that alogb(c)=logb(ca)a\log_b(c) = \log_b(c^a), where aa is a real number, bb is the base of the logarithm, and cc is the argument of the logarithm. We can apply this rule to the second term of the equation to simplify it.\newline2log7(8)=log7(82)=log7(64)2\log_{7}(8) = \log_{7}(8^2) = \log_{7}(64)
  2. Rewrite Equation: Rewrite the equation using the result from Step 11.\newlineThe equation now becomes:\newlinelog7(8x)+log7(64)=2\log_{7}(8x) + \log_{7}(64) = 2
  3. Combine Logarithmic Terms: Combine the logarithmic terms using the product rule.\newlineThe product rule of logarithms states that logb(m)+logb(n)=logb(mn)\log_b(m) + \log_b(n) = \log_b(m*n), where bb is the base of the logarithm, and mm and nn are the arguments. We can combine the two logarithmic terms on the left side of the equation.\newlinelog7(8x64)=2\log_{7}(8x \cdot 64) = 2
  4. Simplify Argument: Simplify the argument of the logarithm.\newlineMultiply 8x8x by 6464 to get the new argument of the logarithm.\newlinelog7(512x)=2\log_{7}(512x) = 2
  5. Convert to Exponential: Convert the logarithmic equation to an exponential equation.\newlineThe equation logb(m)=n\log_b(m) = n can be rewritten as bn=mb^n = m. We will use this property to solve for xx.\newline72=512x7^2 = 512x
  6. Solve for x: Solve for x.\newlineDivide both sides of the equation by 512512 to isolate xx.\newlinex=72/512x = 7^2 / 512\newlinex=49/512x = 49 / 512

More problems from Find derivatives of logarithmic functions