Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(7)(6x)+4log_(7)(3)=3
Answer:

Solve for the exact value of x x .\newlinelog7(6x)+4log7(3)=3 \log _{7}(6 x)+4 \log _{7}(3)=3 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog7(6x)+4log7(3)=3 \log _{7}(6 x)+4 \log _{7}(3)=3 \newlineAnswer:
  1. Apply power rule: Apply the power rule of logarithms to simplify the second term.\newlineThe power rule states that logb(ac)=clogb(a)\log_b(a^c) = c \cdot \log_b(a). We can apply this rule to the second term 4log7(3)4\log_7(3) to simplify it.\newline4log7(3)=log7(34)4\log_7(3) = \log_7(3^4)
  2. Rewrite using simplified term: Rewrite the equation using the simplified second term.\newlinelog7(6x)+log7(34)=3\log_7(6x) + \log_7(3^4) = 3
  3. Combine logarithmic terms: Combine the logarithmic terms using the product rule.\newlineThe product rule states that logb(a)+logb(c)=logb(ac)\log_b(a) + \log_b(c) = \log_b(a \cdot c). We can combine the two logarithmic terms on the left side of the equation.\newlinelog7(6x34)=3\log_7(6x \cdot 3^4) = 3
  4. Calculate to simplify: Calculate 343^4 to simplify the equation further.\newline34=3×3×3×3=813^4 = 3 \times 3 \times 3 \times 3 = 81\newlinelog7(6x×81)=3\log_7(6x \times 81) = 3
  5. Rewrite in exponential form: Rewrite the equation in exponential form.\newlineThe equation log7(6x×81)=3\log_7(6x \times 81) = 3 can be rewritten in exponential form as 73=6x×817^3 = 6x \times 81.\newline73=6x×817^3 = 6x \times 81
  6. Calculate value of x: Calculate 737^3 to find the value on the right side of the equation.\newline73=7×7×7=3437^3 = 7 \times 7 \times 7 = 343\newline343=6x×81343 = 6x \times 81
  7. Calculate value of x: Calculate 737^3 to find the value on the right side of the equation.\newline73=7×7×7=3437^3 = 7 \times 7 \times 7 = 343\newline343=6x×81343 = 6x \times 81Divide both sides of the equation by 8181 to solve for x.\newline343/81=6x343 / 81 = 6x\newlinex=343/(6×81)x = 343 / (6 \times 81)
  8. Calculate value of x: Calculate 737^3 to find the value on the right side of the equation.\newline73=7×7×7=3437^3 = 7 \times 7 \times 7 = 343\newline343=6x×81343 = 6x \times 81 Divide both sides of the equation by 8181 to solve for xx.\newline343/81=6x343 / 81 = 6x\newlinex=343/(6×81)x = 343 / (6 \times 81) Calculate the value of xx.\newlinex=343/(6×81)x = 343 / (6 \times 81)\newlinex=343/486x = 343 / 486\newline73=7×7×7=3437^3 = 7 \times 7 \times 7 = 34300

More problems from Find derivatives of logarithmic functions