Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(6)(9x)-log_(6)(4)=2

Solve for the exact value of xx.\newlinelog6(9x)log6(4)=2\log_{6}(9x)-\log_{6}(4)=2

Full solution

Q. Solve for the exact value of xx.\newlinelog6(9x)log6(4)=2\log_{6}(9x)-\log_{6}(4)=2
  1. Use Quotient Rule: Step 11: Use the quotient rule for logarithms to combine the logs. \newlinelog6(9x4)=2\log_6\left(\frac{9x}{4}\right) = 2
  2. Convert to Exponential Form: Step 22: Convert the logarithmic equation to its exponential form.\newline62=9x46^2 = \frac{9x}{4}
  3. Solve for x: Step 33: Solve for x.\newline36=9x436 = \frac{9x}{4}\newline144=9x144 = 9x\newlinex=1449x = \frac{144}{9}\newlinex=16x = 16

More problems from Find derivatives of logarithmic functions