Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(6)(8x)-3log_(6)(3)=0
Answer:

Solve for the exact value of x x .\newlinelog6(8x)3log6(3)=0 \log _{6}(8 x)-3 \log _{6}(3)=0 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog6(8x)3log6(3)=0 \log _{6}(8 x)-3 \log _{6}(3)=0 \newlineAnswer:
  1. Apply Power Rule: Apply the power rule of logarithms to simplify the equation.\newlineThe power rule states that alogb(c)=logb(ca)a\log_b(c) = \log_b(c^a), where aa is a constant, bb is the base of the logarithm, and cc is the argument of the logarithm. We can apply this rule to the term 3log6(3)3\log_{6}(3) to simplify the equation.\newlinelog6(8x)log6(33)=0\log_{6}(8x) - \log_{6}(3^3) = 0\newlinelog6(8x)log6(27)=0\log_{6}(8x) - \log_{6}(27) = 0
  2. Combine Logarithmic Terms: Combine the logarithmic terms using the quotient rule.\newlineThe quotient rule states that logb(m)logb(n)=logb(mn)\log_b(m) - \log_b(n) = \log_b\left(\frac{m}{n}\right), where bb is the base of the logarithm, mm and nn are the arguments of the logarithm. We can combine the two logarithmic terms into a single logarithm.\newlinelog6(8x27)=0\log_{6}\left(\frac{8x}{27}\right) = 0
  3. Convert to Exponential: Convert the logarithmic equation to an exponential equation.\newlineThe definition of a logarithm states that if logb(m)=n\log_b(m) = n, then bn=mb^n = m. We can use this definition to convert the logarithmic equation into an exponential equation.\newline60=8x276^0 = \frac{8x}{27}
  4. Solve for x: Solve for x.\newlineSince 60=16^0 = 1, we can multiply both sides of the equation by 2727 to solve for xx.\newline1=8x271 = \frac{8x}{27}\newline27=8x27 = 8x\newlinex=278x = \frac{27}{8}

More problems from Find derivatives of logarithmic functions