Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(6)(6x)+2log_(6)(4)=1
Answer:

Solve for the exact value of x x .\newlinelog6(6x)+2log6(4)=1 \log _{6}(6 x)+2 \log _{6}(4)=1 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog6(6x)+2log6(4)=1 \log _{6}(6 x)+2 \log _{6}(4)=1 \newlineAnswer:
  1. Apply power rule: Apply the power rule of logarithms to the second term.\newlineThe power rule states that logb(ac)=clogb(a)\log_b(a^c) = c \cdot \log_b(a). We can apply this to the second term 2log6(4)2\log_{6}(4) to simplify the equation.\newlinelog6(6x)+log6(42)=1\log_{6}(6x) + \log_{6}(4^2) = 1
  2. Simplify second logarithm: Simplify the second logarithm.\newline424^2 is 1616, so we can rewrite the equation as:\newlinelog6(6x)+log6(16)=1\log_{6}(6x) + \log_{6}(16) = 1
  3. Combine logarithms: Combine the logarithms on the left side using the product rule.\newlineThe product rule states that logb(m)+logb(n)=logb(mn)\log_b(m) + \log_b(n) = \log_b(mn). We can combine the two logarithms into one.\newlinelog6(6x16)=1\log_{6}(6x \cdot 16) = 1
  4. Simplify product inside: Simplify the product inside the logarithm. \newline6x×16=96x6x \times 16 = 96x, so the equation becomes: \newlinelog6(96x)=1\log_{6}(96x) = 1
  5. Convert to exponential: Convert the logarithmic equation to an exponential equation.\newlineIf logb(a)=c\log_b(a) = c, then bc=ab^c = a. We can apply this to our equation to solve for xx.\newline61=96x6^1 = 96x
  6. Solve for x: Solve for x.\newlineDivide both sides by 9696 to isolate xx.\newlinex=696x = \frac{6}{96}
  7. Simplify the fraction: Simplify the fraction. 696\frac{6}{96} can be simplified by dividing both numerator and denominator by 66. x=116x = \frac{1}{16}

More problems from Find derivatives of logarithmic functions