Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(6)(5x)-3log_(6)(5)=1
Answer:

Solve for the exact value of x x .\newlinelog6(5x)3log6(5)=1 \log _{6}(5 x)-3 \log _{6}(5)=1 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog6(5x)3log6(5)=1 \log _{6}(5 x)-3 \log _{6}(5)=1 \newlineAnswer:
  1. Apply Power Rule: Apply the power rule of logarithms to simplify the term with the coefficient.\newlineThe power rule states that alogb(c)=logb(ca)a\log_b(c) = \log_b(c^a), where aa is a coefficient, bb is the base of the logarithm, and cc is the argument of the logarithm. In this case, we can rewrite 3log6(5)3\log_{6}(5) as log6(53)\log_{6}(5^3).\newlinelog6(5x)log6(53)=1\log_{6}(5x) - \log_{6}(5^3) = 1
  2. Combine Logarithmic Terms: Use the property of logarithms that allows us to combine the two logarithmic terms into a single term by division. \newlinelogb(a)logb(c)=logb(ac)\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right), where bb is the base of the logarithm, aa and cc are the arguments of the logarithms. We apply this property to combine the two terms.\newlinelog6(5x53)=1\log_{6}\left(\frac{5x}{5^3}\right) = 1
  3. Simplify Argument: Simplify the argument of the logarithm. \newline5x53\frac{5x}{5^3} simplifies to x52\frac{x}{5^2}, since 5x53\frac{5x}{5^3} is the same as 5x×535x \times 5^{-3}, which simplifies to x52\frac{x}{5^2}.\newlinelog6(x25)=1\log_{6}(\frac{x}{25}) = 1
  4. Convert to Exponential: Convert the logarithmic equation to an exponential equation.\newlineIf logb(a)=c\log_b(a) = c, then bc=ab^c = a. We apply this property to solve for xx.\newline61=x256^1 = \frac{x}{25}
  5. Solve for x: Solve for x by multiplying both sides of the equation by 2525.x=6×25x = 6 \times 25x=150x = 150

More problems from Find derivatives of logarithmic functions