Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(4)(9x)-2log_(4)(7)=1
Answer:

Solve for the exact value of x x .\newlinelog4(9x)2log4(7)=1 \log _{4}(9 x)-2 \log _{4}(7)=1 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog4(9x)2log4(7)=1 \log _{4}(9 x)-2 \log _{4}(7)=1 \newlineAnswer:
  1. Apply power rule: Apply the power rule of logarithms to the term with the coefficient.\newlineThe power rule states that alogb(x)=logb(xa)a\log_b(x) = \log_b(x^a). We apply this to the second term of the equation.\newlinelog4(9x)log4(72)=1\log_4(9x) - \log_4(7^2) = 1
  2. Combine using quotient rule: Combine the logarithmic expressions using the quotient rule.\newlineThe quotient rule states that logb(x)logb(y)=logb(xy)\log_b(x) - \log_b(y) = \log_b\left(\frac{x}{y}\right). We apply this to combine the two logarithmic expressions.\newlinelog4(9x49)=1\log_4\left(\frac{9x}{49}\right) = 1
  3. Convert to exponential form: Convert the logarithmic equation to its exponential form.\newlineThe exponential form of logb(x)=y\log_b(x) = y is by=xb^y = x. We apply this to solve for xx.\newline41=9x494^1 = \frac{9x}{49}
  4. Solve for x: Solve for x.\newlineMultiply both sides of the equation by 4949 to isolate x.\newline49×4=9x49 \times 4 = 9x\newline196=9x196 = 9x
  5. Divide to find x: Divide both sides by 99 to find the value of x.\newlinex=1969x = \frac{196}{9}\newlinex=21.7777777778x = 21.7777777778

More problems from Find derivatives of logarithmic functions