Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(3)(9x)-2log_(3)(3)=2
Answer:

Solve for the exact value of x x .\newlinelog3(9x)2log3(3)=2 \log _{3}(9 x)-2 \log _{3}(3)=2 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog3(9x)2log3(3)=2 \log _{3}(9 x)-2 \log _{3}(3)=2 \newlineAnswer:
  1. Understand Logarithm Properties: Understand the properties of logarithms that can be used to simplify the equation.\newlineWe can use the power rule of logarithms, which states that logb(ac)=clogb(a)\log_b(a^c) = c\cdot\log_b(a), to simplify the second term on the left side of the equation.
  2. Apply Power Rule: Apply the power rule to the second term of the equation.\newline2log3(3)2\log_{3}(3) becomes log3(32)\log_{3}(3^2), since we can move the 22 in front of the log to the exponent of the argument.
  3. Simplify Using Logarithmic Properties: Simplify the equation using the fact that 323^2 is 99. \newlinelog3(9x)log3(9)=2\log_{3}(9x) - \log_{3}(9) = 2
  4. Combine Logarithmic Terms: Combine the logarithmic terms on the left side using the quotient rule of logarithms.\newlineThe quotient rule states that logb(a)logb(c)=logb(ac)\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right). Therefore, we can combine the two logarithms on the left into a single logarithm.\newlinelog3(9x9)=2\log_{3}\left(\frac{9x}{9}\right) = 2
  5. Simplify Fraction Inside Logarithm: Simplify the fraction inside the logarithm. \newline9x9\frac{9x}{9} simplifies to xx.\newlinelog3(x)=2\log_{3}(x) = 2
  6. Convert to Exponential Equation: Convert the logarithmic equation to an exponential equation.\newlineUsing the definition of a logarithm, logb(a)=c\log_b(a) = c is equivalent to bc=ab^c = a, we can rewrite the equation as:\newline32=x3^2 = x
  7. Calculate Final Value: Calculate the value of 323^2. 323^2 is 99. x=9x = 9

More problems from Find derivatives of logarithmic functions