Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(2)(8x)-3log_(2)(6)=0
Answer:

Solve for the exact value of x x .\newlinelog2(8x)3log2(6)=0 \log _{2}(8 x)-3 \log _{2}(6)=0 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog2(8x)3log2(6)=0 \log _{2}(8 x)-3 \log _{2}(6)=0 \newlineAnswer:
  1. Apply power rule: Apply the power rule of logarithms to the term 3log2(6)3\log_2(6). The power rule states that alogb(c)=logb(ca)a\log_b(c) = \log_b(c^a), where aa is a constant, bb is the base of the logarithm, and cc is the argument of the logarithm. So, 3log2(6)3\log_2(6) becomes log2(63)\log_2(6^3).
  2. Rewrite equation: Rewrite the equation using the result from Step 11.\newlinelog2(8x)log2(63)=0\log_2(8x) - \log_2(6^3) = 0
  3. Combine logarithms: Combine the logarithms on the left side of the equation using the quotient rule.\newlineThe quotient rule states that logb(m)logb(n)=logb(mn)\log_b(m) - \log_b(n) = \log_b\left(\frac{m}{n}\right), where bb is the base of the logarithm, mm and nn are the arguments of the logarithm.\newlineSo, log2(8x)log2(63)\log_2(8x) - \log_2(6^3) becomes log2(8x63)\log_2\left(\frac{8x}{6^3}\right).
  4. Simplify argument: Simplify the argument of the logarithm. (8x63)(\frac{8x}{6^3}) simplifies to (8x216)(\frac{8x}{216}).
  5. Set equal to 202^0: Set the argument of the logarithm equal to 202^0, since the right side of the equation is 00 and log2(20)=0\log_2(2^0) = 0.\newlinelog2(8x216)=log2(20)\log_2\left(\frac{8x}{216}\right) = \log_2(2^0)\newlineThis implies that 8x216=20\frac{8x}{216} = 2^0.
  6. Solve for x: Solve for x.\newlineSince 20=12^0 = 1, we have (8x)/216=1(8x)/216 = 1.\newlineMultiplying both sides by 216216 gives 8x=2168x = 216.\newlineDividing both sides by 88 gives x=216/8x = 216/8.
  7. Calculate exact value: Calculate the exact value of xx.x=2168x = \frac{216}{8}x=27x = 27

More problems from Find derivatives of logarithmic functions