Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

log_(2)(2x)+3log_(2)(3)=0
Answer:

Solve for the exact value of x x .\newlinelog2(2x)+3log2(3)=0 \log _{2}(2 x)+3 \log _{2}(3)=0 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newlinelog2(2x)+3log2(3)=0 \log _{2}(2 x)+3 \log _{2}(3)=0 \newlineAnswer:
  1. Apply power rule: Apply the power rule of logarithms to the term 3log2(3)3\log_2(3). The power rule states that alogb(c)=logb(ca)a\log_b(c) = \log_b(c^a), so we can rewrite 3log2(3)3\log_2(3) as log2(33)\log_2(3^3). log2(2x)+log2(33)=0\log_2(2x) + \log_2(3^3) = 0
  2. Combine logarithmic terms: Combine the logarithmic terms using the product rule.\newlineThe product rule states that logb(m)+logb(n)=logb(mn)\log_b(m) + \log_b(n) = \log_b(m*n), so we can combine the terms.\newlinelog2(2x33)=0\log_2(2x \cdot 3^3) = 0
  3. Simplify expression: Simplify the expression inside the logarithm.\newline2x×33=2x×272x \times 3^3 = 2x \times 27\newlinelog2(54x)=0\log_2(54x) = 0
  4. Convert to exponential: Convert the logarithmic equation to an exponential equation.\newlineIf log2(54x)=0\log_2(54x) = 0, then 20=54x2^0 = 54x.\newline1=54x1 = 54x
  5. Solve for x: Solve for x.\newlineDivide both sides by 5454 to isolate xx.\newlinex=154x = \frac{1}{54}

More problems from Find derivatives of logarithmic functions