Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for the exact value of 
x.

3ln(2x-2)+14=5
Answer:

Solve for the exact value of x x .\newline3ln(2x2)+14=5 3 \ln (2 x-2)+14=5 \newlineAnswer:

Full solution

Q. Solve for the exact value of x x .\newline3ln(2x2)+14=5 3 \ln (2 x-2)+14=5 \newlineAnswer:
  1. Isolate natural logarithm term: First, we need to isolate the natural logarithm term on one side of the equation. To do this, we subtract 1414 from both sides of the equation.\newline3ln(2x2)+1414=5143\ln(2x-2) + 14 - 14 = 5 - 14\newline3ln(2x2)=93\ln(2x-2) = -9
  2. Divide by 33: Next, we divide both sides of the equation by 33 to solve for the natural logarithm of (2x2)(2x-2).3ln(2x2)3=93\frac{3\ln(2x-2)}{3} = \frac{-9}{3}ln(2x2)=3\ln(2x-2) = -3
  3. Exponentiate to remove ln: Now, we will exponentiate both sides of the equation to remove the natural logarithm. We use the property that eln(x)=xe^{\ln(x)} = x.\newlineeln(2x2)=e3e^{\ln(2x-2)} = e^{-3}\newline2x2=e32x - 2 = e^{-3}
  4. Add 22: We then add 22 to both sides of the equation to solve for 2x2x.\newline2x2+2=e3+22x - 2 + 2 = e^{-3} + 2\newline2x=e3+22x = e^{-3} + 2
  5. Divide by 22: Finally, we divide both sides of the equation by 22 to solve for x.\newline2x2=e3+22\frac{2x}{2} = \frac{e^{-3} + 2}{2}\newlinex=e3+22x = \frac{e^{-3} + 2}{2}

More problems from Find derivatives of sine and cosine functions