Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for kk.\newline53k3=13+2k\frac{5}{3}k - 3 = \frac{1}{3} + 2k\newlinek=k = __

Full solution

Q. Solve for kk.\newline53k3=13+2k\frac{5}{3}k - 3 = \frac{1}{3} + 2k\newlinek=k = __
  1. Rearrange terms: First, we want to get all the terms with kk on one side and the constant terms on the other side.53k3=13+2k\frac{5}{3}k - 3 = \frac{1}{3} + 2kTo do this, we can start by adding 33 to both sides to get rid of the 3-3 on the left side.53k3+3=13+2k+3\frac{5}{3}k - 3 + 3 = \frac{1}{3} + 2k + 3
  2. Simplify equation: Now we simplify both sides of the equation.\newline53k=13+2k+3\frac{5}{3}k = \frac{1}{3} + 2k + 3\newlineTo combine the constant terms on the right side, we need to find a common denominator, which is 33.\newline53k=(1+9)3+2k\frac{5}{3}k = \frac{(1 + 9)}{3} + 2k
  3. Combine constant terms: Next, we add the fractions on the right side.\newline53k=103+2k\frac{5}{3}k = \frac{10}{3} + 2k\newlineNow we want to get all the kk terms on one side. We can subtract 2k2k from both sides to move the kk terms to the left side.\newline53k2k=103\frac{5}{3}k - 2k = \frac{10}{3}
  4. Move kk terms: We need to express 2k2k with a denominator of 33 to combine it with 53k\frac{5}{3}k.
    53k(2k×(33))=103\frac{5}{3}k - (2k \times (\frac{3}{3})) = \frac{10}{3}
    53k63k=103\frac{5}{3}k - \frac{6}{3}k = \frac{10}{3}
    Now we combine the kk terms on the left side.
    (563)k=103(\frac{5 - 6}{3})k = \frac{10}{3}
    13k=103-\frac{1}{3}k = \frac{10}{3}
  5. Combine kk terms: To solve for kk, we need to get rid of the fraction. We can multiply both sides by 3-3 to do this.\newline-3 \times (-\frac{1}{3}k) = -3 \times (\frac{10}{3})\(\newlineThis simplifies to:\newline\$k = -10\)

More problems from Solve linear equations: mixed review