Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for gg.\newline53g=2g23g+2\frac{5}{3}g = 2g - \frac{2}{3}g + 2\newlineg=___g = \_\_\_

Full solution

Q. Solve for gg.\newline53g=2g23g+2\frac{5}{3}g = 2g - \frac{2}{3}g + 2\newlineg=___g = \_\_\_
  1. Combine Like Terms: First, we need to combine like terms on the right side of the equation.\newline53g=2g23g+2\frac{5}{3}g = 2g - \frac{2}{3}g + 2\newlineTo combine the gg terms, we need a common denominator, which is 3g3g.\newline53g=(233)g23g+2\frac{5}{3}g = \left(2\cdot\frac{3}{3}\right)g - \frac{2}{3}g + 2\newline53g=(63)g23g+2\frac{5}{3}g = \left(\frac{6}{3}\right)g - \frac{2}{3}g + 2\newline53g=(6323)g+2\frac{5}{3}g = \left(\frac{6}{3} - \frac{2}{3}\right)g + 2\newline53g=(43)g+2\frac{5}{3}g = \left(\frac{4}{3}\right)g + 2
  2. Get G Terms Together: Next, we need to get all the gg terms on one side of the equation to solve for gg.
    Subtract (4/3)g(4/3)g from both sides to move the gg terms to the left side.
    53g43g=43g43g+2\frac{5}{3}g - \frac{4}{3}g = \frac{4}{3}g - \frac{4}{3}g + 2
    (5343)g=2\left(\frac{5}{3} - \frac{4}{3}\right)g = 2
    13g=2\frac{1}{3}g = 2
  3. Isolate and Solve for G: Now, we need to isolate gg by multiplying both sides of the equation by the reciprocal of 13\frac{1}{3}, which is 33.(13)g×3=2×3\left(\frac{1}{3}\right)g \times 3 = 2 \times 3g=6g = 6

More problems from Solve linear equations: mixed review