Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Solve for
c
c
c
.
\newline
2
c
−
2
=
4
c
=
\begin{array}{l} 2 c-2=4 \\ c= \end{array}
2
c
−
2
=
4
c
=
\newline
Submit
View step-by-step help
Home
Math Problems
Geometry
Sine and cosine of complementary angles
Full solution
Q.
Solve for
c
c
c
.
\newline
2
c
−
2
=
4
c
=
\begin{array}{l} 2 c-2=4 \\ c= \end{array}
2
c
−
2
=
4
c
=
\newline
Submit
Equation
1
1
1
:
First equation is
2
c
−
2
=
4
2c - 2 = 4
2
c
−
2
=
4
. Let's solve for
c
c
c
.
2
c
−
2
=
4
2c - 2 = 4
2
c
−
2
=
4
Add
2
2
2
to both sides to isolate the term with
c
c
c
.
2
c
−
2
+
2
=
4
+
2
2c - 2 + 2 = 4 + 2
2
c
−
2
+
2
=
4
+
2
2
c
=
6
2c = 6
2
c
=
6
Solve for c:
Now, divide both sides by
2
2
2
to solve for c.
\newline
2
c
2
=
6
2
\frac{2c}{2} = \frac{6}{2}
2
2
c
=
2
6
\newline
c
=
3
c = 3
c
=
3
More problems from Sine and cosine of complementary angles
Question
Which is equal to
sin
7
5
∘
\sin 75^\circ
sin
7
5
∘
?
\newline
Choices:
\newline
(A)
cos
2
5
∘
\cos 25^\circ
cos
2
5
∘
\newline
(B)
cos
1
5
∘
\cos 15^\circ
cos
1
5
∘
\newline
(C)
sin
2
5
∘
\sin 25^\circ
sin
2
5
∘
\newline
(D)
sin
1
5
∘
\sin 15^\circ
sin
1
5
∘
Get tutor help
Posted 8 months ago
Question
Factor
28
+
56
t
+
28
w
28+56 t+28 w
28
+
56
t
+
28
w
to identify the equivalent expressions.
\newline
Choose
2
2
2
answers:
\newline
A
2
(
56
+
112
t
+
56
w
)
2(56+112 t+56 w)
2
(
56
+
112
t
+
56
w
)
\newline
B
28
(
1
+
2
t
+
w
)
28(1+2 t+w)
28
(
1
+
2
t
+
w
)
\newline
c
4
(
7
+
13
t
+
7
w
)
4(7+13 t+7 w)
4
(
7
+
13
t
+
7
w
)
\newline
D
7
(
4
+
8
t
+
4
w
)
7(4+8 t+4 w)
7
(
4
+
8
t
+
4
w
)
Get tutor help
Posted 10 months ago
Question
In an election between two candidates Joseph and Judith,
60
%
60\%
60%
of the total number of voters did not vote for Joseph and
50
%
50\%
50%
of the total number of voters did not vote for Judith. If it is known that each voter can vote for only one candidate, what percentage of voters did not cast their votes? [With calculator]
\newline
(A)
5
5
5
\newline
(B)
10
10
10
\newline
(C)
20
20
20
\newline
(D)
30
30
30
Get tutor help
Posted 10 months ago
Question
Jack, Tom, Beth, and Ruth each have a number of marbles. Jack has
10
10
10
marbles, the least, while Tom has
27
27
27
marbles, the highest. Which of the following could be the average of the number of marbles present with all of them, given that no two of them has the same number of marbles?
\newline
A
)
$
13
A)\ \$13
A
)
$13
\newline
B
)
$
17
B)\ \$17
B
)
$17
\newline
C
)
$
23
C)\ \$23
C
)
$23
\newline
D
)
$
26
D)\ \$26
D
)
$26
Get tutor help
Posted 10 months ago
Question
Click and drag like terms onto each other to simplify fully.
\newline
1
−
6
y
+
5
+
6
x
−
5
x
+
4
1-6 y+5+6 x-5 x+4
1
−
6
y
+
5
+
6
x
−
5
x
+
4
Get tutor help
Posted 10 months ago
Question
Click and drag like terms onto each other to simplify fully.
\newline
−
1
−
4
y
3
−
2
x
3
+
5
x
+
2
−
7
−
x
3
-1-4 y^{3}-2 x^{3}+5 x+2-7-x^{3}
−
1
−
4
y
3
−
2
x
3
+
5
x
+
2
−
7
−
x
3
Get tutor help
Posted 10 months ago
Question
Solve the system:
\newline
x
+
6
y
=
17
−
x
+
3
y
=
−
8
\begin{array}{c} x+6 y=17 \\ -x+3 y=-8 \end{array}
x
+
6
y
=
17
−
x
+
3
y
=
−
8
Get tutor help
Posted 10 months ago
Question
For the following sequence determine the common difference (if it is an arithmetic sequence) or the common ratio (if it is a geometric sequence).
\newline
7
,
−
35
,
175
,
…
7,-35,175, \ldots
7
,
−
35
,
175
,
…
\newline
−
5
-5
−
5
\newline
−
42
-42
−
42
\newline
−
1
5
-\frac{1}{5}
−
5
1
\newline
42
42
42
Get tutor help
Posted 10 months ago
Question
For the following sequence determine the common difference (if it is an arithmetic sequence) or the common ratio (if it is a geometric sequence).
\newline
4
x
−
1
,
3
x
−
1
,
2
x
−
1
,
..
4 x-1, \quad 3 x-1, \quad 2 x-1, \quad \text {.. }
4
x
−
1
,
3
x
−
1
,
2
x
−
1
,
..
\newline
1
1
1
\newline
−
x
-x
−
x
\newline
x
x
x
\newline
−
1
-1
−
1
Get tutor help
Posted 10 months ago
Question
Solve the system.
\newline
{
x
+
3
y
−
z
=
−
6
−
2
x
−
y
+
z
=
10
x
−
y
+
3
z
=
2
\begin{cases} x+3y-z&=-6 \ -2x-y+z&=10 \ x-y+3z&=2 \end{cases}
{
x
+
3
y
−
z
=
−
6
−
2
x
−
y
+
z
=
10
x
−
y
+
3
z
=
2
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant