Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for all values of 
x.

(x+3)/(x+9)=(6)/(x)
Answer: 
x=

Solve for all values of x x .\newlinex+3x+9=6x \frac{x+3}{x+9}=\frac{6}{x} \newlineAnswer: x= x=

Full solution

Q. Solve for all values of x x .\newlinex+3x+9=6x \frac{x+3}{x+9}=\frac{6}{x} \newlineAnswer: x= x=
  1. Cross-Multiply: Cross-multiply to eliminate the fractions. \newline(x+3)/(x+9)=6/x(x + 3)/(x + 9) = 6/x\newlineCross-multiplying gives us: (x+3)x=6(x+9)(x + 3) \cdot x = 6 \cdot (x + 9)
  2. Distribute Simplify: Distribute to simplify the equation.\newline(x+3)×x=6×(x+9)(x + 3) \times x = 6 \times (x + 9)\newlinex2+3x=6x+54x^2 + 3x = 6x + 54
  3. Move Terms Set Zero: Move all terms to one side to set the equation to zero.\newlinex2+3x6x54=0x^2 + 3x - 6x - 54 = 0\newlinex23x54=0x^2 - 3x - 54 = 0
  4. Factor Quadratic Equation: Factor the quadratic equation.\newlinex23x54=0x^2 - 3x - 54 = 0\newline(x9)(x+6)=0(x - 9)(x + 6) = 0
  5. Solve for x: Solve for x by setting each factor equal to zero.\newlinex9=0x - 9 = 0 or x+6=0x + 6 = 0\newlinex=9x = 9 or x=6x = -6
  6. Check Validity: Check for extraneous solutions by plugging the values back into the original equation.\newlineFor x=9x = 9:\newline(9+3)/(9+9)=6/9(9 + 3)/(9 + 9) = 6/9\newline12/18=6/912/18 = 6/9\newline2/3=2/32/3 = 2/3 (Valid solution)\newlineFor x=6x = -6:\newline(6+3)/(6+9)=6/(6)(-6 + 3)/(-6 + 9) = 6/(-6)\newline3/3=1-3/3 = -1 (Invalid solution, as it would result in division by zero in the original equation)

More problems from Simplify variable expressions using properties