Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.

(-y^(2)z^(4))^(2)(3x^(2)y^(3)z)

Simplify.\newline(y2z4)2(3x2y3z) \left(-y^{2} z^{4}\right)^{2}\left(3 x^{2} y^{3} z\right)

Full solution

Q. Simplify.\newline(y2z4)2(3x2y3z) \left(-y^{2} z^{4}\right)^{2}\left(3 x^{2} y^{3} z\right)
  1. Simplify Exponents: First, let's simplify (y2z4)2(-y^{2}z^{4})^{2}. We need to square both the yy and zz terms.\newline(y2)2=y22=y4(-y^{2})^{2} = y^{2*2} = y^4\newline(z4)2=z42=z8(z^{4})^{2} = z^{4*2} = z^8\newlineSo, (y2z4)2=y4z8(-y^{2}z^{4})^{2} = y^4z^8
  2. Multiply Terms: Now, multiply y4z8y^4z^8 by 3x2y3z3x^{2}y^{3}z. We combine like terms by adding the exponents for yy and zz. y4y3=y4+3=y7y^4 \cdot y^3 = y^{4+3} = y^7 z8z=z8+1=z9z^8 \cdot z = z^{8+1} = z^9 And multiply the coefficients: 13=31 \cdot 3 = 3 So, y4z83x2y3z=3x2y7z9y^4z^8 \cdot 3x^{2}y^{3}z = 3x^{2}y^7z^9
  3. Check for Errors: Now we check for any math errors in the previous steps.\newlineEverything looks correct, so we can conclude that the simplified form is 3x2y7z9.3x^{2}y^{7}z^{9}.

More problems from Find derivatives of using multiple formulae