Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following expression to simplest form using only positive exponents.

(8x^(18)y^(6))^(-(2)/(3))
Answer:

Simplify the following expression to simplest form using only positive exponents.\newline(8x18y6)23 \left(8 x^{18} y^{6}\right)^{-\frac{2}{3}} \newlineAnswer:

Full solution

Q. Simplify the following expression to simplest form using only positive exponents.\newline(8x18y6)23 \left(8 x^{18} y^{6}\right)^{-\frac{2}{3}} \newlineAnswer:
  1. Apply negative exponent rule: Apply the negative exponent rule which states that an=1ana^{-n} = \frac{1}{a^n}.
    (8x18y6)23=1(8x18y6)23(8x^{18}y^{6})^{-\frac{2}{3}} = \frac{1}{(8x^{18}y^{6})^{\frac{2}{3}}}
  2. Apply power of a power rule: Apply the power of a power rule which states that (am)n=amn(a^m)^n = a^{m*n}.1(8x18y6)23=1823×x18×23×y6×23\frac{1}{(8x^{18}y^{6})^{\frac{2}{3}}} = \frac{1}{8^{\frac{2}{3}} \times x^{18\times\frac{2}{3}} \times y^{6\times\frac{2}{3}}}
  3. Calculate exponents: Calculate the exponents for each term. \newline1823×x18(23)×y6(23)=1823×x12×y4\frac{1}{8^{\frac{2}{3}} \times x^{18\left(\frac{2}{3}\right)} \times y^{6\left(\frac{2}{3}\right)}} = \frac{1}{8^{\frac{2}{3}} \times x^{12} \times y^{4}}
  4. Simplify cube root of 88: Simplify the cube root of 88 which is 22, and then raise it to the power of 22. \newline1(823x12y4)=1(22x12y4)\frac{1}{(8^{\frac{2}{3}} * x^{12} * y^{4})} = \frac{1}{(2^2 * x^{12} * y^{4})}
  5. Calculate 222^2: Calculate 222^2. \newline 122×x12×y4=14×x12×y4\frac{1}{2^2 \times x^{12} \times y^{4}} = \frac{1}{4 \times x^{12} \times y^{4}}
  6. Write final expression: Write the final expression with positive exponents. \newline14x12y4=14x12y4\frac{1}{4 \cdot x^{12} \cdot y^{4}} = \frac{1}{4x^{12}y^{4}}

More problems from Simplify variable expressions using properties