Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following expression to simplest form using only positive exponents.

(8x^(-3)y^(-21))^((2)/(3))
Answer:

Simplify the following expression to simplest form using only positive exponents.\newline(8x3y21)23 \left(8 x^{-3} y^{-21}\right)^{\frac{2}{3}} \newlineAnswer:

Full solution

Q. Simplify the following expression to simplest form using only positive exponents.\newline(8x3y21)23 \left(8 x^{-3} y^{-21}\right)^{\frac{2}{3}} \newlineAnswer:
  1. Apply Power to Factors: Apply the power to each factor inside the parentheses.\newlineTo simplify the expression (8x3y21)23(8x^{-3}y^{-21})^{\frac{2}{3}}, we need to apply the exponent of 23\frac{2}{3} to each factor inside the parentheses. This means we will raise 88 to the power of 23\frac{2}{3}, xx to the power of 323-3\cdot\frac{2}{3}, and yy to the power of 2123-21\cdot\frac{2}{3}.
  2. Simplify Exponents: Simplify the exponents.\newlineRaising 88 to the power of 23\frac{2}{3} means we are looking for the cube root of 88 squared. For xx and yy, we multiply the exponents by 23\frac{2}{3}, which simplifies the negative exponents.\newline823=(23)23=23(23)=22=48^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3*(\frac{2}{3})} = 2^2 = 4\newlinex3(23)=x2x^{-3*(\frac{2}{3})} = x^{-2}\newliney21(23)=y14y^{-21*(\frac{2}{3})} = y^{-14}
  3. Convert Negative Exponents: Convert negative exponents to positive exponents.\newlineTo express the expression using only positive exponents, we take the reciprocal of the base for the negative exponents.\newlinex2=1x2x^{-2} = \frac{1}{x^2}\newliney14=1y14y^{-14} = \frac{1}{y^{14}}
  4. Combine Results: Combine the results.\newlineNow we combine the results from the previous steps to write the expression with positive exponents only.\newline4×(1x2)×(1y14)=4x2×y144 \times \left(\frac{1}{x^2}\right) \times \left(\frac{1}{y^{14}}\right) = \frac{4}{x^2 \times y^{14}}

More problems from Simplify variable expressions using properties