Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the following
a) 
((x)/(y))^(3)×((y)/(z))^(2)×((z)/(x))^(4)

Simplify the following\newline(xy)3×(yz)2×(zx)4 \left(\frac{x}{y}\right)^{3} \times\left(\frac{y}{z}\right)^{2} \times\left(\frac{z}{x}\right)^{4}

Full solution

Q. Simplify the following\newline(xy)3×(yz)2×(zx)4 \left(\frac{x}{y}\right)^{3} \times\left(\frac{y}{z}\right)^{2} \times\left(\frac{z}{x}\right)^{4}
  1. Combine like terms: Combine the powers of the same bases by adding or subtracting the exponents. \newline(xy)3×(yz)2×(zx)4=x3y3×y2z2×z4x4\left(\frac{x}{y}\right)^3 \times \left(\frac{y}{z}\right)^2 \times \left(\frac{z}{x}\right)^4 = \frac{x^3}{y^3} \times \frac{y^2}{z^2} \times \frac{z^4}{x^4}
  2. Simplify exponents: Simplify by combining like terms.\newline=x3y2z4y3z2x4= \frac{x^3 \cdot y^2 \cdot z^4}{y^3 \cdot z^2 \cdot x^4}\newline=x34y23z42= x^{3-4} \cdot y^{2-3} \cdot z^{4-2}\newline=x1y1z2= x^{-1} \cdot y^{-1} \cdot z^{2}
  3. Rewrite negative exponents: Rewrite negative exponents as fractions.\newline=1x×1y×z2= \frac{1}{x} \times \frac{1}{y} \times z^{2}\newline=z2xy= \frac{z^{2}}{xy}

More problems from Writing from expanded to exponent form

QuestionGet tutor helpright-arrow

Posted 9 months ago

QuestionGet tutor helpright-arrow

Posted 11 months ago