Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression. Write your answers using integers or improper fractions.

-(1)/(2)v-3(-3v-(5)/(2))
Answer:

Simplify the expression. Write your answers using integers or improper fractions.\newline12v3(3v52) -\frac{1}{2} v-3\left(-3 v-\frac{5}{2}\right) \newlineAnswer:

Full solution

Q. Simplify the expression. Write your answers using integers or improper fractions.\newline12v3(3v52) -\frac{1}{2} v-3\left(-3 v-\frac{5}{2}\right) \newlineAnswer:
  1. Distribute negative sign: Distribute the negative sign inside the parentheses.\newlineWe have the expression (12)v3(3v(52))-\left(\frac{1}{2}\right)v - 3(-3v - \left(\frac{5}{2}\right)). First, we distribute the 3-3 across the parentheses to both 3v-3v and 52-\frac{5}{2}.\newline3×3v=9v-3 \times -3v = 9v\newline3×(52)=152-3 \times -\left(\frac{5}{2}\right) = \frac{15}{2}
  2. Combine distributed terms: Combine the distributed terms with the rest of the expression.\newlineNow we combine the terms from the distribution with the initial 12v-\frac{1}{2}v.\newline12v+9v+152-\frac{1}{2}v + 9v + \frac{15}{2}
  3. Combine like terms: Combine like terms.\newlineWe need to combine the vv terms. To do this, we need a common denominator. The common denominator for 12\frac{1}{2} and 99 (which is 91\frac{9}{1}) is 22.\newline(12)v-\left(\frac{1}{2}\right)v is the same as 12v-\frac{1}{2}v.\newline9v9v is the same as 182v\frac{18}{2}v.\newlineNow we add 12v-\frac{1}{2}v and 182v\frac{18}{2}v.\newline12\frac{1}{2}11
  4. Write final expression: Write the final simplified expression.\newlineNow we have the vv term and the constant term. The final expression is:\newline(172)v+152(\frac{17}{2})v + \frac{15}{2}

More problems from Powers with decimal and fractional bases

QuestionGet tutor helpright-arrow

Posted 9 months ago

QuestionGet tutor helpright-arrow

Posted 11 months ago