Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression. Write your answers using integers or improper fractions.

5(3u-5u-2)-(1)/(3)u
Answer:

Simplify the expression. Write your answers using integers or improper fractions.\newline5(3u5u2)13u 5(3 u-5 u-2)-\frac{1}{3} u \newlineAnswer:

Full solution

Q. Simplify the expression. Write your answers using integers or improper fractions.\newline5(3u5u2)13u 5(3 u-5 u-2)-\frac{1}{3} u \newlineAnswer:
  1. Distribute Terms: Distribute 55 into the terms inside the parentheses (3u5u2)(3u-5u-2). \newline5×3u=15u5 \times 3u = 15u\newline5×5u=25u5 \times -5u = -25u\newline5×2=105 \times -2 = -10\newlineSo, 5(3u5u2)5(3u-5u-2) becomes 15u25u1015u - 25u - 10.
  2. Combine Like Terms: Combine like terms from the result of the distribution.\newline15u25u=10u15u - 25u = -10u\newlineSo, 15u25u1015u - 25u - 10 becomes 10u10-10u - 10.
  3. Write Entire Expression: Write down the entire expression with the combined like terms.\newlineThe expression now is 10u1013u-10u - 10 - \frac{1}{3}u.
  4. Combine Like Terms: Combine the like terms 10u-10u and (1/3)u-(1/3)u. To combine these, we need a common denominator, which is 33. 10u-10u can be written as (30/3)u(-30/3)u. So, (30/3)u(1/3)u=(301)/3×u=(31/3)u(-30/3)u - (1/3)u = (-30 - 1)/3 \times u = (-31/3)u.
  5. Write Simplified Expression: Write down the simplified expression with the combined like terms.\newlineThe expression now is (313)u10(-\frac{31}{3})u - 10.

More problems from Powers with decimal and fractional bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago