Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression. Write your answers using integers or improper fractions.

(1)/(2)(-(5)/(4)f-(7)/(4))-4f
Answer:

Simplify the expression. Write your answers using integers or improper fractions.\newline12(54f74)4f \frac{1}{2}\left(-\frac{5}{4} f-\frac{7}{4}\right)-4 f \newlineAnswer:

Full solution

Q. Simplify the expression. Write your answers using integers or improper fractions.\newline12(54f74)4f \frac{1}{2}\left(-\frac{5}{4} f-\frac{7}{4}\right)-4 f \newlineAnswer:
  1. Distribute negative sign: Distribute the negative sign inside the parentheses.\newlineWe have the expression (1)/(2)((5)/(4)f(7)/(4))4f(1)/(2)(-(5)/(4)f-(7)/(4))-4f. First, we distribute the negative sign to both terms inside the parentheses.\newline(1)/(2)(1×(5)/(4)f1×(7)/(4))4f(1)/(2)(-1 \times (5)/(4)f - 1 \times (7)/(4)) - 4f\newline= (1)/(2)((5)/(4)f(7)/(4))4f(1)/(2)(-(5)/(4)f - (7)/(4)) - 4f
  2. Multiply by (1)/(2)(1)/(2): Multiply each term inside the parentheses by (1)/(2)(1)/(2).\newlineNow we multiply each term inside the parentheses by (1)/(2)(1)/(2).\newline(\(1)/(22) \times (-(55)/(44)f) + (11)/(22) \times (-(77)/(44)) - 44f\newline= (11)/(22) \times -(55)/(44)f - (11)/(22) \times (77)/(44) - 44f
  3. Simplify multiplication: Simplify the multiplication.\newlineWe simplify the multiplication by reducing the fractions.\newline= (58f)784f\left(-\frac{5}{8}f\right) - \frac{7}{8} - 4f
  4. Combine like terms: Combine like terms.\newlineWe have two terms with the variable ff, so we combine them.\newline=(58f)4f78= \left(-\frac{5}{8}f\right) - 4f - \frac{7}{8}
  5. Convert whole number: Convert the whole number to a fraction with the same denominator as the fraction term.\newlineTo combine the terms with ff, we need to convert 4f4f to a fraction with a denominator of 88.\newline4f=4×88f=328f4f = 4 \times \frac{8}{8}f = \frac{32}{8}f\newlineNow we can combine the terms.\newline=(58f)328f78= \left(-\frac{5}{8}f\right) - \frac{32}{8}f - \frac{7}{8}
  6. Add fractions with variable: Add the fractions with the variable ff.\newlineNow we add the fractions with the variable ff.\newline=(58f)328f= \left(-\frac{5}{8}f\right) - \frac{32}{8}f\newline=(5+328)f= \left(-\frac{5+32}{8}\right)f\newline= \left(-\frac{\(37\)}{\(8\)}\right)f
  7. Write final expression: Write the final simplified expression.\(\newlineNow we write the final simplified expression by including the constant term.\newline=(37)8f78= \frac{-(37)}{8}f - \frac{7}{8}

More problems from Multiplication with rational exponents