Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression \newline(1log(1a)(1(ab)2)+loga2(ab))/((1loga(ab)+loga2(ab))12).(1-\log_{\left(\frac{1}{a}\right)}\left(\frac{1}{(a-b)^{2}}\right)+\log_{a}^{2}(a-b))/\left((1-\log_{\sqrt{a}}(a-b)+\log_{a}^{2}(a-b))^{\frac{1}{2}}\right).

Full solution

Q. Simplify the expression \newline(1log(1a)(1(ab)2)+loga2(ab))/((1loga(ab)+loga2(ab))12).(1-\log_{\left(\frac{1}{a}\right)}\left(\frac{1}{(a-b)^{2}}\right)+\log_{a}^{2}(a-b))/\left((1-\log_{\sqrt{a}}(a-b)+\log_{a}^{2}(a-b))^{\frac{1}{2}}\right).
  1. Recognize Log Properties: Recognize that log properties can be used to simplify the expression. 1log1a(1(ab)2)+loga2(ab)(1loga(ab)+loga2(ab))12\frac{1-\log_{\frac{1}{a}}\left(\frac{1}{(a-b)^{2}}\right)+\log_{a}^{2}(a-b)}{\left(1-\log_{\sqrt{a}}(a-b)+\log_{a}^{2}(a-b)\right)^{\frac{1}{2}}}
  2. Use Change of Base Formula: Use the change of base formula: logb(a)=logc(a)logc(b)\log_b(a) = \frac{\log_c(a)}{\log_c(b)}. log1a(1(ab)2)=log(1(ab)2)log(1a)\log_{\frac{1}{a}}\left(\frac{1}{(a-b)^{2}}\right) = \frac{\log\left(\frac{1}{(a-b)^{2}}\right)}{\log\left(\frac{1}{a}\right)}
  3. Simplify Logarithm: Simplify the logarithm using the property log(1x)=log(x)\log\left(\frac{1}{x}\right) = -\log(x).log(1(ab)2)=log((ab)2)\log\left(\frac{1}{(a-b)^{2}}\right) = -\log((a-b)^{2})
  4. Apply Power Rule: Apply the power rule of logarithms: log(xy)=ylog(x)\log(x^y) = y\log(x). log((ab)2)=2log(ab)-\log((a-b)^{2}) = -2\log(a-b)
  5. Substitute Simplified Log: Substitute the simplified log back into the expression.\newline(1(2log(ab))+loga2(ab))/((1loga(ab)+loga2(ab))(1)/(2))(1 - (-2\log(a-b)) + \log_{a}^{2}(a-b)) / ((1 - \log_{\sqrt{a}}(a-b) + \log_{a}^{2}(a-b))^{(1)/(2)})
  6. Correct Log Notation: Recognize that loga2(x)\log_{a}^{2}(x) is not a standard logarithm notation and correct it.loga2(x)\log_{a}^{2}(x) should be (loga(x))2(\log_{a}(x))^2.

More problems from Multiplication with rational exponents