Q. Simplify the expression (1−log(a1)((a−b)21)+loga2(a−b))/((1−loga(a−b)+loga2(a−b))21).
Recognize Log Properties: Recognize that log properties can be used to simplify the expression. (1−loga(a−b)+loga2(a−b))211−loga1((a−b)21)+loga2(a−b)
Use Change of Base Formula: Use the change of base formula: logb(a)=logc(b)logc(a). loga1((a−b)21)=log(a1)log((a−b)21)
Simplify Logarithm: Simplify the logarithm using the property log(x1)=−log(x).log((a−b)21)=−log((a−b)2)
Apply Power Rule: Apply the power rule of logarithms: log(xy)=ylog(x). −log((a−b)2)=−2log(a−b)
Substitute Simplified Log: Substitute the simplified log back into the expression.(1−(−2log(a−b))+loga2(a−b))/((1−loga(a−b)+loga2(a−b))(1)/(2))
Correct Log Notation: Recognize that loga2(x) is not a standard logarithm notation and correct it.loga2(x) should be (loga(x))2.
More problems from Multiplication with rational exponents