Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(x-7)/(3x^(2)+x-2)+(x^(2)+3x-18)/(x^(2)-5x+6)×(x^(2)+3x-10)/(3x^(2)+13 x-10)

x73x2+x2+x2+3x18x25x+6×x2+3x103x2+13x10\frac{x-7}{3 x^{2}+x-2}+\frac{x^{2}+3 x-18}{x^{2}-5 x+6} \times \frac{x^{2}+3 x-10}{3 x^{2}+13 x-10}

Full solution

Q. x73x2+x2+x2+3x18x25x+6×x2+3x103x2+13x10\frac{x-7}{3 x^{2}+x-2}+\frac{x^{2}+3 x-18}{x^{2}-5 x+6} \times \frac{x^{2}+3 x-10}{3 x^{2}+13 x-10}
  1. Factor Denominators and Numerators: First, we need to factor the denominators and numerators where possible to see if there are any common factors that can be canceled out.\newlineLet's start with the denominator of the first fraction: 3x2+x23x^2 + x - 2.\newlineWe look for two numbers that multiply to 3×2=63 \times -2 = -6 and add to 11. These numbers are 33 and 2-2.\newlineSo, 3x2+x23x^2 + x - 2 factors to (3x2)(x+1)(3x - 2)(x + 1).
  2. Factor First Fraction Denominator: Next, we factor the denominator of the second fraction: x25x+6x^2 - 5x + 6.\newlineWe look for two numbers that multiply to 66 and add to 5-5. These numbers are 2-2 and 3-3.\newlineSo, x25x+6x^2 - 5x + 6 factors to (x2)(x3)(x - 2)(x - 3).
  3. Factor Second Fraction Denominator: Now, let's factor the numerator of the second fraction: x2+3x18x^2 + 3x - 18.\newlineWe look for two numbers that multiply to 18-18 and add to 33. These numbers are 66 and 3-3.\newlineSo, x2+3x18x^2 + 3x - 18 factors to (x+6)(x3)(x + 6)(x - 3).
  4. Factor Second Fraction Numerator: We also need to factor the numerator of the third fraction: x2+3x10x^2 + 3x - 10.\newlineWe look for two numbers that multiply to 10-10 and add to 33. These numbers are 55 and 2-2.\newlineSo, x2+3x10x^2 + 3x - 10 factors to (x+5)(x2)(x + 5)(x - 2).
  5. Factor Third Fraction Numerator: Lastly, we factor the denominator of the third fraction: 3x2+13x103x^2 + 13x - 10.\newlineWe look for two numbers that multiply to 3×10=303 \times -10 = -30 and add to 1313. These numbers are 1515 and 2-2.\newlineSo, 3x2+13x103x^2 + 13x - 10 factors to (3x2)(x+5)(3x - 2)(x + 5).
  6. Factor Third Fraction Denominator: Now we can rewrite the entire expression with the factored forms:\newlinex7(3x2)(x+1)+(x+6)(x3)(x2)(x3)×(x+5)(x2)(3x2)(x+5)\frac{x - 7}{(3x - 2)(x + 1)} + \frac{(x + 6)(x - 3)}{(x - 2)(x - 3)} \times \frac{(x + 5)(x - 2)}{(3x - 2)(x + 5)}
  7. Rewrite Expression with Factored Forms: We can cancel out the common factors in the second term of the expression:\newlineThe (x3)(x - 3) in the numerator cancels with the (x3)(x - 3) in the denominator.\newlineThe (x2)(x - 2) in the numerator cancels with the (x2)(x - 2) in the denominator.\newlineThis simplifies the second term to just x+6x + 6.
  8. Cancel Common Factors in Second Term: Similarly, in the third term of the expression, the (3x2)(3x - 2) in the denominator cancels with the (3x2)(3x - 2) in the numerator.\newlineThe (x+5)(x + 5) in the numerator cancels with the (x+5)(x + 5) in the denominator.\newlineThis simplifies the third term to just 11.
  9. Simplify Third Term: Now we have:\newlinex7(3x2)(x+1)+(x+6)×1\frac{x - 7}{(3x - 2)(x + 1)} + (x + 6) \times 1
  10. Combine Terms with Common Denominator: We can now combine the two terms by finding a common denominator, which is (3x2)(x+1)(3x - 2)(x + 1).\newlineThe second term, x+6x + 6, needs to be multiplied by the common denominator to combine the terms:\newlinex7(3x2)(x+1)+(x+6)(3x2)(x+1)(3x2)(x+1)\frac{x - 7}{(3x - 2)(x + 1)} + \frac{(x + 6)(3x - 2)(x + 1)}{(3x - 2)(x + 1)}
  11. Distribute Second Term in Numerator: Now we can add the two fractions together since they have the same denominator:\newlinex7+(x+6)(3x2)(x+1)(3x2)(x+1)\frac{x - 7 + (x + 6)(3x - 2)(x + 1)}{(3x - 2)(x + 1)}
  12. Substitute Back into Combined Fraction: Next, we need to distribute (x+6)(x + 6) across (3x2)(x+1)(3x - 2)(x + 1) in the numerator:\newline(x+6)(3x2)(x+1)=(3x22x+18x12)(x+1)(x + 6)(3x - 2)(x + 1) = (3x^2 - 2x + 18x - 12)(x + 1)\newline=(3x2+16x12)(x+1)= (3x^2 + 16x - 12)(x + 1)\newline=3x3+3x2+16x2+16x12x12= 3x^3 + 3x^2 + 16x^2 + 16x - 12x - 12\newline=3x3+19x2+4x12= 3x^3 + 19x^2 + 4x - 12
  13. State Restrictions on Variables: Now we substitute this back into the combined fraction:\newlinex7+3x3+19x2+4x12(3x2)(x+1)\frac{x - 7 + 3x^3 + 19x^2 + 4x - 12}{(3x - 2)(x + 1)}\newline=3x3+19x2+5x19(3x2)(x+1)= \frac{3x^3 + 19x^2 + 5x - 19}{(3x - 2)(x + 1)}
  14. State Restrictions on Variables: Now we substitute this back into the combined fraction:\newlinex7+3x3+19x2+4x12(3x2)(x+1)\frac{x - 7 + 3x^3 + 19x^2 + 4x - 12}{(3x - 2)(x + 1)}\newline=3x3+19x2+5x19(3x2)(x+1)= \frac{3x^3 + 19x^2 + 5x - 19}{(3x - 2)(x + 1)}Finally, we state the restrictions on the variables. The original denominators cannot be equal to zero, so we set them equal to zero and solve for xx:\newline3x2=03x - 2 = 0 gives x=23x = \frac{2}{3}.\newlinex+1=0x + 1 = 0 gives x=1x = -1.\newlinex2=0x - 2 = 0 gives x=2x = 2.\newlinex3=0x - 3 = 0 gives x=3x = 3.\newlinex+5=0x + 5 = 0 gives 3x2=03x - 2 = 000.\newlineSo the restrictions on xx are that xx cannot be 3x2=03x - 2 = 033, 3x2=03x - 2 = 044, 3x2=03x - 2 = 055, 3x2=03x - 2 = 066, or 3x2=03x - 2 = 077.

More problems from Find derivatives of using multiple formulae