Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify 
ln(root(3)(e^(4)))
Answer:

Simplify ln(e43) \ln \left(\sqrt[3]{e^{4}}\right) \newlineAnswer:

Full solution

Q. Simplify ln(e43) \ln \left(\sqrt[3]{e^{4}}\right) \newlineAnswer:
  1. Understand the expression: Understand the expression ln(e43)\ln(\sqrt[3]{e^{4}}). This expression involves the natural logarithm of the cube root of ee raised to the power of 44. The cube root can be expressed as a fractional exponent.
  2. Convert to fractional exponent: Convert the cube root to a fractional exponent. The cube root of e4e^{4} is the same as e43e^{\frac{4}{3}}. So, ln(e43)\ln(\sqrt[3]{e^{4}}) becomes ln(e43)\ln(e^{\frac{4}{3}}).
  3. Apply logarithm power rule: Apply the logarithm power rule.\newlineThe power rule of logarithms states that ln(ab)=bln(a)\ln(a^b) = b \cdot \ln(a). We apply this rule to simplify ln(e43)\ln(e^{\frac{4}{3}}) to 43ln(e)\frac{4}{3} \cdot \ln(e).
  4. Simplify using ln(e)=1\ln(e)=1: Simplify the expression using the fact that ln(e)=1\ln(e) = 1.\newlineSince the natural logarithm of ee is 11, the expression (4/3)×ln(e)(4/3) \times \ln(e) simplifies to (4/3)×1(4/3) \times 1.
  5. Perform multiplication: Perform the multiplication to find the final answer.\newline(43)×1(\frac{4}{3}) \times 1 equals 43\frac{4}{3}. Therefore, the simplified form of the expression is 43\frac{4}{3}.

More problems from Simplify variable expressions using properties